首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The first 83 3' nucleotides of the genome RNA of the flavivirus West Nile encephalitis virus (WNV) form a stable stem-loop (SL) structure which is followed in the genome by a smaller SL. These 3' structures are highly conserved among divergent flaviviruses, suggesting that they may function as cis-acting signals for RNA replication and as such might specifically bind to cellular or viral proteins. Cellular proteins from uninfected and WNV-infected BHK-21 S100 cytoplasmic extracts formed three distinct complexes with the WNV plus-strand 3' SL [(+)3'SL] RNA in a gel mobility shift assay. Subsequent competitor gel shift analyses showed that two of these RNA-protein complexes, complexes 1 and 2, contained cell proteins that specifically bound to the WNV (+)3'SL RNA. UV-induced cross-linking and Northwestern blotting analyses detected WNV (+)3'SL RNA-binding proteins of 56, 84, and 105 kDa. When the S100 cytoplasmic extracts were partially purified by ion-exchange chromatography, a complex that comigrated with complex 1 was detected in fraction 19, while a complex that comigrated with complex 2 was detected in fraction 17. UV-induced cross-linking experiments indicated that an 84-kDa cell protein in fraction 17 and a 105-kDa protein in fraction 19 bound specifically to the WNV (+)3'SL RNA. In addition to binding to the (+)3'SL RNA, the 105-kDa protein bound to the SL structure located at the 3' end of the WNV minus-strand RNA. Initial mapping studies indicated that the 84- and 105-kDa proteins bind to different regions of the (+)3'SL RNA. The 3'-terminal SL RNA of another flavivirus, dengue virus type 3, specifically competed with the WNV (+)3'SL RNA in gel shift assays, suggesting that the host proteins identified in this study are flavivirus specific.  相似文献   

3.
4.
Long-range RNA-RNA interactions circularize the dengue virus genome   总被引:6,自引:0,他引:6       下载免费PDF全文
Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5' and 3' ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy revealed that physical interaction between these RNA elements results in cyclization of the viral RNA. Using RNA binding assays, we found that the putative cyclization sequences, known as 5' and 3' CS, present in all mosquito-borne flaviviruses, were necessary but not sufficient for RNA-RNA interaction. Additional sequences present at the 5' and 3' untranslated regions of the viral RNA were also required for RNA-RNA complex formation. We named these sequences 5' and 3' UAR (upstream AUG region). In order to investigate the functional role of 5'-3' UAR complementarity, these sequences were mutated either separately, to destroy base pairing, or simultaneously, to restore complementarity in the context of full-length dengue virus RNA. Nonviable viruses were recovered after transfection of dengue virus RNA carrying mutations either at the 5' or 3' UAR, while the RNA containing the compensatory mutations was able to replicate. Since sequence complementarity between the ends of the genome is required for dengue virus viability, we propose that cyclization of the RNA is a required conformation for viral replication.  相似文献   

5.
West Nile virus (WNV) is a neurovirulent mosquito-borne flavivirus, which main natural hosts are birds but it also infects equines and humans, among other mammals. As in the case of other plus-stranded RNA viruses, WNV replication is associated to intracellular membrane rearrangements. Based on results obtained with a variety of viruses, different cellular processes have been shown to play important roles on these membrane rearrangements for efficient viral replication. As these processes are related to lipid metabolism, fatty acid synthesis, as well as generation of a specific lipid microenvironment enriched in phosphatidylinositol-4-phosphate (PI4P), has been associated to it in other viral models. In this study, intracellular membrane rearrangements following infection with a highly neurovirulent strain of WNV were addressed by means of electron and confocal microscopy. Infection of WNV, and specifically viral RNA replication, were dependent on fatty acid synthesis, as revealed by the inhibitory effect of cerulenin and C75, two pharmacological inhibitors of fatty acid synthase, a key enzyme of this process. However, WNV infection did not induce redistribution of PI4P lipids, and PI4P did not localize at viral replication complex. Even more, WNV multiplication was not inhibited by the use of the phosphatidylinositol-4-kinase inhibitor PIK93, while infection by the enterovirus Coxsackievirus B5 was reduced. Similar features were found when infection by other flavivirus, the Usutu virus (USUV), was analyzed. These features of WNV replication could help to design specific antiviral approaches against WNV and other related flaviviruses.  相似文献   

6.
Sequences of 191 flavivirus RNAs belonging to four sero-groups were used to predict the secondary structure of the 3' noncoding region (3' NCR) directly upstream of the conserved terminal hairpin. In mosquito-borne flavivirus RNAs (n = 164) a characteristic structure element was identified that includes a phylogenetically well-supported pseudoknot. This element is repeated in the dengue and Japanese encephalitis RNAs and centers around the conserved sequences CS2 and RCS2. In yellow fever virus RNAs that contain one CS2 motif, only one copy of this pseudoknotted structure was found. The conserved pseudoknotted element is absent from the 3' NCR of tick-borne virus RNAs, which altogether adopt a secondary structure that is very different from that of mosquito-borne virus RNAs. The strong conservation of the pseudoknot in mosquito-borne flavivirus RNAs implies a stronger relationship between these viruses than concluded from previous secondary structure analyses. The role of the (tandem) pseudoknots in flavivirus replication is discussed.  相似文献   

7.
Zhou Y  Ray D  Zhao Y  Dong H  Ren S  Li Z  Guo Y  Bernard KA  Shi PY  Li H 《Journal of virology》2007,81(8):3891-3903
The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.  相似文献   

8.
The 5' end of the flavivirus plus-sense RNA genome contains a type 1 cap (m(7)GpppAmG), followed by a conserved stem-loop structure. We report that nonstructural protein 5 (NS5) from four serocomplexes of flaviviruses specifically methylates the cap through recognition of the 5' terminus of viral RNA. Distinct RNA elements are required for the methylations at guanine N-7 on the cap and ribose 2'-OH on the first transcribed nucleotide. In a West Nile virus (WNV) model, N-7 cap methylation requires specific nucleotides at the second and third positions and a 5' stem-loop structure; in contrast, 2'-OH ribose methylation requires specific nucleotides at the first and second positions, with a minimum 5' viral RNA of 20 nucleotides. The cap analogues GpppA and m(7)GpppA are not active substrates for WNV methytransferase. Footprinting experiments using Gppp- and m(7)Gppp-terminated RNAs suggest that the 5' termini of RNA substrates interact with NS5 during the sequential methylation reactions. Cap methylations could be inhibited by an antisense oligomer targeting the first 20 nucleotides of WNV genome. The viral RNA-specific cap methylation suggests methyltransferase as a novel target for flavivirus drug discovery.  相似文献   

9.
Oas1b was previously identified as the product of the Flv(r) allele that confers flavivirus-specific resistance to virus-induced disease in mice by an uncharacterized, RNase L-independent mechanism. To gain insights about the mechanism by which Oas1b specifically reduces the efficiency of flavivirus replication, cellular protein interaction partners were identified and their involvement in the Oas1b-mediated flavivirus resistance mechanism was analyzed. Initial difficulties in getting the two-hybrid assay to work with full-length Oas1b led to the discovery that this Oas protein uniquely has a C-terminal transmembrane domain that targets it to the endoplasmic reticulum (ER). Two peptides matching to oxysterol binding protein-related protein 1L (ORP1L) and ATP binding cassette protein 3, subfamily F (ABCF3), were identified as Oas1b interaction partners in yeast two-hybrid assays, and both in vitro-transcribed/translated peptides and full-length proteins in mammalian cell lysates coimmunoprecipitated with Oas1b. Knockdown of a partner involved in Oas1b-mediated antiflavivirus activity would be expected to increase flavivirus replication but not that of other types of viruses. However, RNA interference (RNAi) knockdown of ORP1L decreased the replication of the flavivirus West Nile virus (WNV) as well as that of other types of RNA viruses. This virus-nonspecific effect may be due to the recently reported dysregulation of late endosome movement by ORP1L knockdown. Knockdown of ABCF3 protein levels increased the replication of WNV but not that of other types of RNA viruses, and this effect on WNV replication was observed only in Oas1b-expressing cells. The results suggest that Oas1b is part of a complex located in the ER and that ABCF3 is a component of the Flv(r)-mediated resistance mechanism.  相似文献   

10.
Mosquito-borne flaviviruses are among the most significant arboviral pathogens worldwide. Vaccinations and mosquito population control programs remain the most reliable means for flavivirus disease prevention, and live attenuated viruses remain one of the most attractive flavivirus vaccine platforms. Some live attenuated viruses are capable of infecting principle mosquito vectors, as demonstrated in the laboratory, which in combination with their intrinsic genetic instability could potentially lead to a vaccine virus reversion back to wild-type in nature, followed by introduction and dissemination of potentially dangerous viral strains into new geographic locations. To mitigate this risk we developed a microRNA-targeting approach that selectively restricts replication of flavivirus in the mosquito host. Introduction of sequences complementary to a mosquito-specific mir-184 and mir-275 miRNAs individually or in combination into the 3’NCR and/or ORF region resulted in selective restriction of dengue type 4 virus (DEN4) replication in mosquito cell lines and adult Aedes mosquitos. Moreover a combined targeting of DEN4 genome with mosquito-specific and vertebrate CNS-specific mir-124 miRNA can silence viral replication in two evolutionally distant biological systems: mosquitoes and mouse brains. Thus, this approach can reinforce the safety of newly developed or existing vaccines for use in humans and could provide an additional level of biosafety for laboratories using viruses with altered pathogenic or transmissibility characteristics.  相似文献   

11.
Circularization of the HIV-1 RNA genome   总被引:2,自引:0,他引:2  
  相似文献   

12.
P Y Shi  W Li    M A Brinton 《Journal of virology》1996,70(9):6278-6287
The first 96 nucleotides of the 5'noncoding region (NCR) of West Nile virus (WNV) genomic RNA were previously reported to form thermodynamically predicted stem-loop (SL) structures that are conserved among flaviviruses. The complementary minus-strand 3' NCR RNA, which is thought to function as a promoter for the synthesis of plus-strand RNA, forms a corresponding predicted SL structure. RNase probing of the WNV 3' minus-strand stem-loop RNA [WNV (-)3' SL RNA] confirmed the existence of a terminal secondary structure. RNA-protein binding studies were performed with BHK S100 cytoplasmic extracts and in vitro-synthesized WNV (-)3' SL RNA as the probe. Three RNA-protein complexes (complexes 1,2, and 3) were detected by a gel mobility shift assay, and the specificity of the RNA-protein interactions was confirmed by gel mobility shift and UV-induced cross-linking competition assays. Four BHK cell proteins with molecular masses of 108, 60, 50, and 42 kDa were detected by UV-induced cross-linking to the WNV (-)3' SL RNA. A preliminary mapping study indicated that all four proteins bound to the first 75 nucleotides of the WNV 3' minus-strand RNA, the region that contains the terminal SL. A flavivirus resistance phenotype was previously shown to be inherited in mice as a single, autosomal dominant allele. The efficiencies of infection of resistant cells and susceptible cells are similar, but resistant cells (C3H/RV) produce less genomic RNA than congenic, susceptible cells (C3H/He). Three RNA-protein complexes and four UV-induced cross-linked cell proteins with mobilities identical to those detected in BHK cell extracts with the WNV (-)3' SL RNA were found in both C3H/RV and C3H/He cell extracts. However, the half-life of the C3H/RV complex 1 was three times longer than that of the C3H/He complex 1. It is possible that the increased binding activity of one of the resistant cell proteins for the flavivirus minus-strand RNA could result in a reduced synthesis of plus-strand RNA as observed with the flavivirus resistance phenotype.  相似文献   

13.
Emara MM  Liu H  Davis WG  Brinton MA 《Journal of virology》2008,82(21):10657-10670
Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.  相似文献   

14.
The ubiquitin ligase CBLL1 (also known as HAKAI) has been proposed to be a critical cellular factor exploited by West Nile virus (WNV) for productive infection. CBLL1 has emerged as a major hit in a recent RNA interference screen designed to identify cellular factors required for the early stages of the WNV life cycle. Follow-up experiments showed that HeLa cells knocked down for CBLL1 by a small interfering RNA (siRNA) failed to internalize WNV particles and resisted infection. Furthermore, depletion of a free-ubiquitin pool by the proteasome inhibitor MG132 abolished WNV endocytosis, suggesting that CBLL1 acts in concert with the ubiquitin proteasome system to mediate virus internalization. Here, we examined the effect of CBLL1 knockdown and proteasome inhibitors on infection by WNV and other flaviviruses. We identified new siRNAs that repress the CBLL1 protein and strongly inhibit the endocytosis of Listeria monocytogenes, a bacterial pathogen known to require CBLL1 to invade host cells. Strikingly, however, we detected efficient WNV, dengue virus, and yellow fever virus infection of human cells, despite potent downregulation of CBLL1 by RNA interference. In addition, we found that the proteasome inhibitors MG132 and lactacystin did not affect WNV internalization but strongly repressed flavivirus RNA translation and replication. Together, these data do not support a requirement for CBLL1 during flavivirus entry and rather suggest an essential role of the ubiquitin/proteasome pathway for flavivirus genome amplification.  相似文献   

15.
RNA elements within flavivirus genomes are potential targets for antiviral therapy. A panel of phosphorodiamidate morpholino oligomers (PMOs), whose sequences are complementary to RNA elements located in the 5'- and 3'-termini of the West Nile (WN) virus genome, were designed to anneal to important cis-acting elements and potentially to inhibit WN infection. A novel Arg-rich peptide was conjugated to each PMO for efficient cellular delivery. These PMOs exhibited various degrees of antiviral activity upon incubation with a WN virus luciferase-replicon-containing cell line. Among them, PMOs targeting the 5'-terminal 20 nucleotides (5'End) or targeting the 3'-terminal element involved in a potential genome cyclizing interaction (3'CSI) exhibited the greatest potency. When cells infected with an epidemic strain of WN virus were treated with the 5'End or 3'CSI PMO, virus titers were reduced by approximately 5 to 6 logs at a 5 muM concentration without apparent cytotoxicity. The 3'CSI PMO also inhibited mosquito-borne flaviviruses other than WN virus, and the antiviral potency correlated with the conservation of the targeted 3'CSI sequences of specific viruses. Mode-of-action analyses showed that the 5'End and 3'CSI PMOs suppressed viral infection through two distinct mechanisms. The 5'End PMO inhibited viral translation, whereas the 3'CSI PMO did not significantly affect viral translation but suppressed RNA replication. The results suggest that antisense PMO-mediated blocking of cis-acting elements of flavivirus genomes can potentially be developed into an anti-flavivirus therapy. In addition, we report that although a full-length WN virus containing a luciferase reporter (engineered at the 3' untranslated region of the genome) is not stable, an early passage of this reporting virus can be used to screen for inhibitors against any step of the virus life cycle.  相似文献   

16.
17.
Y T Hwang  B Y Liu  D M Coen    C B Hwang 《Journal of virology》1997,71(10):7791-7798
The herpes simplex virus DNA polymerase catalytic subunit, which has intrinsic polymerase and 3'-5' exonuclease activities, contains sequence motifs that are homologous to those important for 3'-5' exonuclease activity in other polymerases. The role of one such motif, Exo III, was examined in this study. Mutated polymerases containing either a single tyrosine-to-histidine change at residue 577 or this change plus an aspartic acid-to-alanine at residue 581 in the Exo III motif exhibited defective or undetectable exonuclease activity, respectively, yet retained substantial polymerase activity. Despite the defects in exonuclease activity, the mutant polymerases were able to support viral replication in transient complementation assays, albeit inefficiently. Viruses replicated via the action of these mutant polymerases exhibited substantially increased frequencies of mutants resistant to ganciclovir. Furthermore, when the Exo III mutations were incorporated into the viral genome, the resulting mutant viruses displayed only modestly defect in replication in Vero cells and exhibited substantially increased mutation frequencies. The results suggest that herpes simplex virus can replicate despite severely impaired exonuclease activity and that the 3'-5' exonuclease contributes substantially to the fidelity of viral DNA replication.  相似文献   

18.
Over the last few years, an essential RNA structure known as the cis-acting replicative element (cre) has been identified within the protein-coding region of several picornaviruses. The cre, a stem-loop structure containing a conserved AAACA motif, functions as a template for addition of U residues to the protein primer 3B. By surveying the genomes of representatives of several serotypes of foot-and-mouth disease virus (FMDV), we discovered a putative cre in the 5' untranslated region of the genome (contiguous with the internal ribosome entry site [IRES]). To confirm the role of this putative cre in replication, we tested the importance of the AAACA motif and base pairing in the stem in FMDV genome replication. To this end, cre mutations were cloned into an FMDV replicon and into synthetic viral genomes. Analyses of the properties of these replicons and genomes revealed the following. (i) Mutations in the AAACA motif severely reduced replication, and all viruses recovered from genomes containing mutated AAACA sequences had reverted to the wild-type sequence. (ii) Mutations in the stem region showed that the ability to form this base-paired structure was important for replication. Although the cre was contiguous with the IRES, the mutations we created did not significantly reduce IRES-mediated translation in vivo. Finally, the position of the cre at the 5' end of the genome was shown not to be critical for replication, since functional replicons and viruses lacking the 5' cre could be obtained if a wild-type cre was added to the genome following the 3D(pol) coding region. Taken together, these results support the importance of the cre in replication and demonstrate that the activity of this essential element does not require localization within the polyprotein-encoding region of the genome.  相似文献   

19.
West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3′-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.  相似文献   

20.
West Nile virus (WNV) has spread throughout the United States and Canada and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to acute flaccid paralysis and lethal encephalitis. No therapy or vaccine is currently approved for use in humans. Using high-throughput screening assays that included a luciferase expressing WNV subgenomic replicon and an NS1 capture enzyme-linked immunosorbent assay, we evaluated a chemical library of over 80,000 compounds for their capacity to inhibit WNV replication. We identified 10 compounds with strong inhibitory activity against genetically diverse WNV and Kunjin virus isolates. Many of the inhibitory compounds belonged to a chemical family of secondary sulfonamides and have not been described previously to inhibit WNV or other related or unrelated viruses. Several of these compounds inhibited WNV infection in the submicromolar range, had selectivity indices of greater than 10, and inhibited replication of other flaviviruses, including dengue and yellow fever viruses. One of the most promising compounds, AP30451, specifically blocked translation of a yellow fever virus replicon but not a Sindbis virus replicon or an internal ribosome entry site containing mRNA. Overall, these compounds comprise a novel class of promising inhibitors for therapy against WNV and other flavivirus infections in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号