首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A monoclonal IgG antibody directed against gp 41 from the human immunodeficiency virus (HIV-1) has been crystallized in both intact and Fab forms. Crystals of the intact antibody grow as tetragonal-like prisms too small for conventional X-ray analysis. However, the Fab portion of the antibody produces suitable plate-like crystals which belong to the space group P2(1)2(1)2(1) with unit cell constants of a = 66.5 A, b = 74.3 A and c = 105.3 A. There is one molecule of Fab in the asymmetric unit. The Fab crystals show diffraction to d-spacings less than 3.0 A.  相似文献   

2.
3.
We report here that a human immunodeficiency virus type 1 (HIV-1)-specific neutralizing monoclonal antibody (MAb 1575) mapped to the conserved putative intracellular region from amino acid residues 735 to 752 (735-752 region) of gp41 also recognizes a region in an extracellular portion of p17. Both epitopes have a core recognition sequence (IEEE) in a nonhomologous context. The IEEE motif found in HIV-1 p17 is located in a region known as HGP-30 (residues 86 to 115) which has been previously associated with virus neutralization, cytotoxic T lymphocyte activity, and mother-to-child transmission. An analysis of available gp41 and p17 sequences demonstrates that in these regions both IEEE sequences are highly conserved in different HIV-1 clades. The presence of the IEEE epitope in p17 allows us to explain some unexpected neutralizing characteristics of MAb 1575. In addition, the gp41 735-752 region has been previously reported both in intra- and extracellular locations. Our results suggest that the extracellular location was the result of cross-reactivity with p17.  相似文献   

4.
The identification and characterization of new human monoclonal antibodies (hMAbs) able to neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates from different subtypes may help in our understanding of the mechanisms of virus entry and neutralization and in the development of entry inhibitors and vaccines. For enhanced selection of broadly cross-reactive antibodies, soluble HIV-1 envelope glycoproteins (Envs proteins) from two isolates complexed with two-domain soluble CD4 (sCD4) were alternated during panning of a phage-displayed human antibody library; these two Env proteins (89.6 and IIIB gp140s), and one additional Env (JR-FL gp120) alone and complexed with sCD4 were used for screening. An antibody with relatively long HCDR3 (17 residues), designated m14, was identified that bound to all antigens and neutralized heterologous HIV-1 isolates in multiple assay formats. Fab m14 potently neutralized selected well-characterized subtype B isolates, including JRCSF, 89.6, IIIB, and Yu2. Immunoglobulin G1 (IgG1) m14 was more potent than Fab m14 and neutralized 7 of 10 other clade B isolates; notably, although the potency was on average significantly lower than that of IgG1 b12, IgG1 m14 neutralized two of the isolates with significantly lower 50% inhibitory concentrations than did IgG1 b12. IgG1 m14 neutralized four of four selected clade C isolates with potency higher than that of IgG1 b12. It also neutralized 7 of 17 clade C isolates from southern Africa that were difficult to neutralize with other hMAbs and sCD4. IgG1 m14 neutralized four of seven primary HIV-1 isolates from other clades (A, D, E, and F) much more efficiently than did IgG1 b12; for the other three isolates, IgG b12 was much more potent. Fab m14 bound with high (nanomolar range) affinity to gp120 and gp140 from various isolates; its binding was reduced by soluble CD4 and antibodies recognizing the CD4 binding site (CD4bs) on gp120, and its footprint as defined by alanine-scanning mutagenesis overlaps that of b12. These results suggest that m14 is a novel CD4bs cross-reactive HIV-1-neutralizing antibody that exhibits a different inhibitory profile compared to the only known potent broadly neutralizing CD4bs human antibody, b12, and may have implications for our understanding of the mechanisms of immune evasion and for the development of inhibitors and vaccines.  相似文献   

5.
Vaccination against human immunodeficiency virus type 1 (HIV-1) requires an immunogen which will elicit a protective immunity against viruses that show a high degree of genetic polymorphism. Therefore, the identification of neutralizing epitopes which are shared by many strains would be useful. In previous studies, we established a human monoclonal antibody (2F5) that neutralizes a variety of laboratory strains and clinical isolates of HIV-1. In the present report, we define the amino acid sequence Glu-Leu-Asp-Lys-Trp-Ala (ELDKWA) on the ectodomain of gp41 as the epitope recognized by this antibody. The sequence was found to be conserved in 72% of otherwise highly variable HIV-1 isolates. Escape mutants were not detected in cells infected with HIV-1 isolates MN and RF in the presence of antibody 2F5. Since sequence variability of neutralizing epitopes is considered to be a major obstacle to HIV-1 vaccine development, the conserved B-cell epitope described here is a promising candidate for inclusion in a vaccine against AIDS.  相似文献   

6.
A human monoclonal antibody, 41-7 [immunoglobulin G1(kappa)], directed against the transmembrane glycoprotein gp41 of the human immunodeficiency virus type 1 (HIV-1) has been produced by direct fusion of lymph node cells from an HIV-1-infected individual with a human B-lymphoblastoid cell line. The minimal essential epitope for 41-7 was mapped to a conserved seven-amino acid sequence, N-CSGKLIC-C, located within the N-terminal part of gp41. Antibodies blocking the binding of 41-7 could be detected in the serum of all HIV-1-infected individuals tested, irrespective of the stage of the infection. The epitope is located externally to the plasma membrane, and it is accessible to antibody in the native conformation of the glycoprotein. Despite this, no neutralizing activity of 41-7 could be demonstrated in vitro. These data indicate, directly and indirectly, that this immunodominant epitope on gp41, although exposed on the viral surface, elicits antibodies lacking antiviral activity and, hence, should be avoided in future vaccine candidates.  相似文献   

7.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), in combination with proteolytic protection assays, has been used to identify the functional epitope on human immunodeficiency virus envelope glycoprotein gp41 for the broadly neutralizing anti-gp41 human monoclonal antibody 2F5. In this protection assay-based procedure, a soluble gp140 protein with a stabilizing intermolecular disulfide bond between the gp120 and gp41 subunits (SOS gp140) was affinity bound to immobilized 2F5 under physiological conditions. A combination of proteolytic enzymatic cleavages was then performed to remove unprotected residues. Residues of SOS gp140 protected by their binding to 2F5 were then identified based on their molecular weights as determined by direct MALDI-MS of the immobilized antibody beads. The epitope, NEQELLELDKWASLWN, determined by this MALDI-MS protection assay approach consists of 16 amino acid residues near the C terminus of gp41. It is significantly longer than the ELDKWA core epitope previously determined for 2F5 by peptide enzyme-linked immunosorbent assay. This new knowledge of the structure of the 2F5 epitope may facilitate the design of vaccine antigens intended to induce antibodies with the breadth and potency of action of the 2F5 monoclonal antibody.  相似文献   

8.
While one hypervariable, linear neutralizing determinant on the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein has been well characterized, little is known about the conserved, discontinuous gp120 epitopes recognized by neutralizing antibodies in infected individuals. Here, the epitope recognized by a broadly reactive neutralizing monoclonal antibody (F105) derived from an HIV-1-infected patient was characterized by examining the effects of changes in conserved gp120 amino acids on antibody reactivity. The F105 epitope was disrupted by changes in gp120 amino acids 256 and 257, 368 to 370, 421, and 470 to 484, which is consistent with the discontinuous nature of the epitope. Three of these regions are proximal to those previously shown to be important for CD4 binding, which is consistent with the ability of the F105 antibody to block gp120-CD4 interaction. Since F105 recognition was more sensitive to amino acid changes in each of the four identified gp120 regions than was envelope glycoprotein function, replication-competent mutant viruses that escaped neutralization by the F105 antibody were identified. These studies identify a conserved, functional HIV-1 gp120 epitope that is immunogenic in man and may serve as a target for therapeutic or prophylactic intervention.  相似文献   

9.
The membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 bears the epitopes of two broadly neutralizing antibodies (Abs), 2F5 and 4E10, making it a target for vaccine design. A third Ab, Fab Z13, had previously been mapped to an epitope that overlaps those of 2F5 and 4E10 but only weakly neutralizes a limited set of primary isolates. Here, libraries of Fab Z13 variants displayed on phage were engineered and affinity selected against an MPER peptide and recombinant gp41. A high-affinity variant, designated Z13e1, was isolated and found to be approximately 100-fold improved over the parental Fab not only in binding affinity for the MPER antigens but also in neutralization potency against sensitive HIV-1. Alanine scanning of MPER residues 664 to 680 revealed that N671 and D674 are crucial for peptide recognition as well as for the neutralization of HIV-1 by Z13e1. Ab competition studies and truncation of MPER peptides indicate that Z13e1 binds with high affinity to an epitope between and overlapping with those of 2F5 and 4E10, with the minimal peptide epitope WASLWNWFDITN. Still, Z13e1 remained about an order of magnitude less potent than 4E10 against several isolates of pseudotyped HIV-1. The sum of our molecular analyses with Z13e1 suggests that the segment on the MPER of gp41 between the 2F5 and 4E10 epitopes is exposed on the functional envelope trimer but that access to the specific Z13e1 epitope within this segment is limited. Thus, the ability of MPER-bearing immunogens to elicit potent HIV-1-neutralizing Abs may depend in part on recapitulating the particular constraints that the functional envelope trimer imposes on the segment of the MPER to which Z13e1 binds.  相似文献   

10.
A monoclonal Fab (Fab 3674) selected from a human nonimmune phage library by panning against the chimeric construct NCCG-gp41 (which comprises an exposed coiled-coil trimer of gp41 N helices fused in the helical phase onto the minimal thermostable ectodomain of gp41) is described. Fab 3674 is shown to neutralize diverse laboratory-adapted B strains of human immunodeficiency virus type 1 (HIV-1) and primary isolates of subtypes A, B, and C in an Env-pseudotyped-virus neutralization assay, albeit with reduced potency (approximately 25-fold) compared to that of 2F5 and 4E10. Alanine scanning mutagenesis maps a novel epitope to a shallow groove on the N helices of gp41 that is exposed between two C helices in the fusogenic six-helix bundle conformation of gp41. Bivalent Fab 3674 and the C34 peptide (a potent fusion inhibitor derived from the C helix of gp41) are shown to act at similar stages of the fusion reaction and to neutralize HIV-1 synergistically, providing additional evidence that the epitope of Fab 3674 is new and distinct from the binding site of C34.  相似文献   

11.
Human monoclonal antibody 2F5 is one of a few human antibodies that neutralize a broad range of HIV-1 primary isolates. The 2F5 epitope on gp41 includes the sequence ELDKWA, with the core residues, DKW, being critical for antibody binding. HIV-neutralizing antibodies have never been elicited by immunization with peptides bearing ELDKWA, suggesting that important part(s) of the 2F5 paratope remain unidentified. The use of longer peptides extending beyond ELDKWA has resulted in increased epitope antigenicity, but neutralizing antibodies have not been generated. We sought to develop peptides that bind to 2F5, and that function as specific probes of the 2F5 paratope. Thus, we used 2F5 to screen a set of phage-displayed, random peptide libraries. Tight-binding clones from the random peptide libraries displayed sequence variability in the regions flanking the DKW motif. To further reveal flanking regions involved in 2F5 binding, two semi-defined libraries were constructed having 12 variegated residues either N-terminal or C-terminal to the DKW core (X(12)-AADKW and AADKW-X(12), respectively). Three clones isolated from the AADKW-X(12) library had similar high affinities, despite a lack of sequence homology among them, or with gp41. The contribution of each residue of these clones to 2F5 binding was evaluated by Ala substitution and amino acid deletion studies, and revealed that each clone bound 2F5 by a different mechanism. These results suggest that the 2F5 paratope is formed by at least two functionally distinct regions: one that displays specificity for the DKW core epitope, and another that is multispecific for sequences C-terminal to the core epitope. The implications of this second, multispecific region of the 2F5 paratope for its unique biological function are discussed.  相似文献   

12.
A human monoclonal antibody designated 15e is reactive with the envelope glycoprotein (gp120) of multiple isolates of human immunodeficiency virus type 1 (HIV-1). Antibody 15e also neutralizes HIV-1 with broad specificity and blocks gp120 binding to CD4. Characterization of the 15e epitope shows that it is conformation dependent and is distinct from previously recognized functional domains of gp120, suggesting that this epitope represents a novel site important for HIV-1 neutralization and CD4 binding. These findings have implications for the development of a vaccine for AIDS.  相似文献   

13.
We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.  相似文献   

14.
《MABS-AUSTIN》2013,5(5):462-474
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralizationpotencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

15.
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralization potencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as VH CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

16.
Among nonneutralizing HIV-1 envelope antibodies (Abs), those capable of mediating antibody-dependent cellular cytotoxicity (ADCC) activity have been postulated to be important for control of HIV-1 infection. ADCC-mediating Ab must recognize HIV-1 antigens expressed on the membrane of infected cells and bind the Fcγ receptor (FcR) of the effector cell population. However, the precise targets of serum ADCC antibody are poorly characterized. The human monoclonal antibody (MAb) A32 is a nonneutralizing antibody isolated from an HIV-1 chronically infected person. We investigated the ability of MAb A32 to recognize HIV-1 envelope expressed on the surface of CD4(+) T cells infected with primary and laboratory-adapted strains of HIV-1, as well as its ability to mediate ADCC activity. The MAb A32 epitope was expressed on the surface of HIV-1-infected CD4(+) T cells earlier than the CD4-inducible (CD4i) epitope bound by MAb 17b and the gp120 carbohydrate epitope bound by MAb 2G12. Importantly, MAb A32 was a potent mediator of ADCC activity. Finally, an A32 Fab fragment blocked the majority of ADCC-mediating Ab activity in plasma of subjects chronically infected with HIV-1. These data demonstrate that the epitope defined by MAb A32 is a major target on gp120 for plasma ADCC activity.  相似文献   

17.
We investigated how the broadly neutralizing monoclonal antibody 2F5 affects the human immunodeficiency virus type 1 envelope glycoprotein as it undergoes receptor-induced conformational changes and show that 2F5 binds both native and fusion-intermediate conformations, suggesting inhibition of a late step in virus entry. We also demonstrate conformational changes in the C heptad of gp41.  相似文献   

18.
Monoclonal antibodies (MAbs) were obtained by immunizing mice with synthetic peptides corresponding to the third variable (V3) or the third conserved (C3) domain of the external envelope protein (gp120) of human immunodeficiency virus type 2 (HIV-2ROD). One MAb, designated B2C, which was raised against V3 peptide NKI26, bound to the surface of HIV-2-infected cells but not to their uninfected counterparts. B2C was capable of neutralizing cell-free and cell-associated virus infection in an isolate-specific fashion. The antibody-binding epitope was mapped to a 6-amino-acid peptide in the V3 variable domain which had the core sequence His-Tyr-Gln. Two MAbs, 2H1B and 2F19C, which were raised against the C3 peptide TND27 reacted with gp120 of HIV-2ROD in a Western immunoblot assay. The C3 epitopes recognized by these two MAbs appeared inaccessible because of their poor reactivity in a surface immunofluorescence assay. Although partial inhibition of syncytium formation was observed in the presence of the anti-C3 MAbs, their neutralizing activity appeared weak. Finally, the effects of these MAbs against CD4-gp120 binding were assessed. Partial inhibition of CD4-gp120 binding was observed in the presence of high concentrations of B2C. On the other hand, no inhibition of CD4-gp120 binding was observed in the presence of anti-C3 MAbs. Since complete neutralization could be achieved at a concentration corresponding to that of partial binding inhibition by B2C, some different mechanisms may be involved in the B2C-mediated neutralization. These results, taken together, indicated that analogous to the function of the V3 region of HIV-1, the V3 region of HIV-2ROD contained at least a type-specific fusion-inhibiting neutralizing epitope. In this respect, the V3 sequence of HIV-2 may be a useful target in an animal model for HIV vaccine development.  相似文献   

19.
We have analyzed the unique epitope for the broadly neutralizing human monoclonal antibody (MAb) 2G12 on the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). Sequence analysis, focusing on the conservation of relevant residues across multiple HIV-1 isolates, refined the epitope that was defined previously by substitutional mutagenesis (A. Trkola, M. Purtscher, T. Muster, C. Ballaun, A. Buchacher, N. Sullivan, K. Srinivasan, J. Sodroski, J. P. Moore, and H. Katinger, J. Virol. 70:1100-1108, 1996). In a biochemical study, we digested recombinant gp120 with various glycosidase enzymes of known specificities and showed that the 2G12 epitope is lost when gp120 is treated with mannosidases. Computational analyses were used to position the epitope in the context of the virion-associated envelope glycoprotein complex, to determine the variability of the surrounding surface, and to calculate the surface accessibility of possible glycan- and polypeptide-epitope components. Together, these analyses suggest that the 2G12 epitope is centered on the high-mannose and/or hybrid glycans of residues 295, 332, and 392, with peripheral glycans from 386 and 448 on either flank. The epitope is mannose dependent and composed primarily of carbohydrate, with probably no direct involvement of the gp120 polypeptide surface. It resides on a face orthogonal to the CD4 binding face, on a surface proximal to, but distinct from, that implicated in coreceptor binding. Its conservation amidst an otherwise highly variable gp120 surface suggests a functional role for the 2G12 binding site, perhaps related to the mannose-dependent attachment of HIV-1 to DC-SIGN or related lectins that facilitate virus entry into susceptible target cells.  相似文献   

20.
The conserved influenza virus hemagglutinin (HA) stem domain elicits cross-reactive antibodies, but epitopes in the globular head typically elicit strain-specific responses because of the hypervariability of this region. We isolated human monoclonal antibody 5J8, which neutralized a broad spectrum of 20th century H1N1 viruses and the 2009 pandemic H1N1 virus. Fine mapping of the interaction unexpectedly revealed a novel epitope between the receptor-binding pocket and the Ca2 antigenic site on HA. This antibody exposes a new mechanism underlying broad immunity against H1N1 influenza viruses and identifies a conserved epitope that might be incorporated into engineered H1 virus vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号