首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hepadnaviruses, as well as other pararetroviruses, express their pol (P) gene product unfused to the preceding core gene implying that these retroelements have developed a mechanism for initiating assembly and replication that is principally different from the one used by retroviruses and retrotransposons. We have analysed this mechanism for the human hepatitis B virus by using a newly developed, highly sensitive detection method based upon radiolabelling of the P protein at newly introduced target sites for protein kinase A. The results obtained demonstrate that polymerase encapsidation depends on the concomittant encapsidation of the HBV RNA pregenome and that packaging of the viral RNA, in turn, depends on the presence of P protein. Loss of P protein encapsidation by mutations inactivating the HBV RNA encapsidation signal epsilon could be compensated by trans-complementation with recombinant RNA molecules carrying the epsilon sequence. Thus, in contrast to retroviral replication, the interaction of the hepadnaviral P protein and the RNA genome at its packaging signal appears to be crucial for initiating the formation of replication-competent nucleocapsids. Furthermore, RNA control of P protein packaging stringently limits the number of polymerase molecules that can be encapsidated.  相似文献   

4.
The cytidine deaminase hAPOBEC3G is an antiviral human factor that counteracts the replication of HIV-1 in absence of the Vif protein. hAPOBEC3G is packaged into virus particles and lethally hypermutates HIV-1. In this work, we examine the mechanisms governing hAPOBEC3G packaging. By GST pull-down and co-immunoprecipitation assays, we show that hAPOBEC3G binds to HIV-1 Pr55 Gag and its NC domain and to the RT and IN domains contained in Pr160 Gag-Pol. We demonstrate that the expression of HIV-1 Gag is sufficient to induce the packaging of hAPOBEC3G into Gag particles. Gag-Pol polypeptides containing RT and IN domains, as well as HIV-1 genomic RNA, seem not to be necessary for hAPOBEC3G packaging. Lastly, we show that hAPOBEC3G and its murine ortholog are packaged into HIV-1 and MLV Gag particles. We conclude that the Gag polypeptides from distant retroviruses have conserved domains allowing the packaging of the host antiviral factor APOBEC3G.  相似文献   

5.
6.
The major role of hepatitis B virus polymerase (HBV pol) is polymerization of nucleotides, but it also participates in protein priming and the packaging of its own genome into capsids. Therefore, HBV pol may require many assistance factors for its roles. Previous reports have shown that Hsp60, a molecular chaperone, activates HBV pol both in vitro and ex vivo, such as inside insect cells. Moreover, HBV pol binds to Hsp60 in the HepG2 host cell line. In this report, we show that Hsp60 plays a role in the in vivo replication of HBV. Antisense oligodeoxynucleotides (A-ODNs) specifically directed against Hsp60 induced its down-regulation, severely reducing the level of replication-competent HBV without influencing cell proliferation and capsid assembly under these conditions. Furthermore, we found that Hsp60 did not encapsidate into nucleocapsids. Our results indicate that Hsp60 is important for HBV replication in vivo, presumably through activation of HBV pol before encapsidation of HBV pol into HBV core particle. In addition, A-ODNs specific for Hsp60 also inhibit replication of a mutant HBV strain that is resistant to the nucleoside analogue 3TC, which is the main drug used for HBV treatment, and we suggest that A-ODNs directed against Hsp60 are possible reagents as anti-HBV drugs. Conclusively, this report shows that the host factor, Hsp60, is essential for in vivo HBV replication and that mechanism of Hsp60 is probably through an activation of HBV pol by Hsp60.  相似文献   

7.
8.
Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is a host cytidine deaminase that is packaged into virions and confers resistance to retroviral infection. APOBEC3G deaminates deoxycytidines in minus strand DNA to deoxyuridines, resulting in G to A hypermutation and viral inactivation. Human immunodeficiency virus type 1 (HIV-1) virion infectivity factor counteracts the antiviral activity of APOBEC3G by inducing its proteosomal degradation and preventing virion incorporation. To elucidate the mechanism of viral suppression by APOBEC3G, we developed a sensitive cytidine deamination assay and analyzed APOBEC3G virion incorporation in a series of HIV-1 deletion mutants. Virus-like particles derived from constructs in which pol, env, and most of gag were deleted still contained high levels of cytidine deaminase activity; in addition, coimmunoprecipitation of APOBEC3G and HIV-1 Gag in the presence and absence of RNase A indicated that the two proteins do not interact directly but form an RNase-sensitive complex. Viral particles lacking HIV-1 genomic RNA which were generated from the gag-pol expression constructs pC-Help and pSYNGP packaged APOBEC3G at 30-40% of the wild-type level, indicating that interactions with viral RNA are not necessary for incorporation. In addition, viral particles produced from an nucleocapsid zinc finger mutant contained approximately 1% of the viral genomic RNA but approximately 30% of the cytidine deaminase activity. The reduction in APOBEC3G incorporation was equivalent to the reduction in the total RNA present in the nucleocapsid mutant virions. These results indicate that interactions with viral proteins or viral genomic RNA are not essential for APOBEC3G incorporation and suggest that APOBEC3G interactions with viral and nonviral RNAs that are packaged into viral particles are sufficient for APOBEC3G virion incorporation.  相似文献   

9.
10.
11.
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G) and APOBEC3F (A3F), act as potent human immunodeficiency virus type-1 (HIV-1) restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC) region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA) and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC) fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.  相似文献   

12.
APOBEC3G is an endogenous host restriction factor that inhibits human immunodeficiency virus (HIV) replication. The antiviral activity of APOBEC3G is dependent upon its incorporation into the virus particle. The mechanisms governing incorporation of APOBEC3G into virus particles are not completely understood. In particular, some investigators have reported that APOBEC3G interacts directly with the nucleocapsid (NC) subunit of Gag, while others have found that an RNA intermediate is required for Gag-APOBEC3G interactions. In this study, we confirmed the RNA dependence of APOBEC3G packaging and performed detailed mapping of the determinants within NC that are required for virion incorporation. Surprisingly, APOBEC3G packaging did not correlate well with the presence of the N-terminal "I," or interaction, domain within NC. Specifically, Gag constructs containing only the N-terminal region of NC packaged minimal amounts of APOBEC3G, while significant levels of APOBEC3G packaging were achieved with Gag constructs containing the basic linker region of NC. Furthermore, membrane-binding experiments revealed that the basic linker region was essential for the membrane association of APOBEC3G in a Gag-APOBEC3G complex. Fluorescence resonance energy transfer was detected between labeled APOBEC3G in cells and in particles, indicating that APOBEC3G is packaged as a multimer that is bound to packaged RNA. Regions of APOBEC3G-Gag colocalization at the plasma membrane were detected that were distinct from the punctate cytoplasmic bodies where APOBEC3G accumulates within the cell. Together, our results indicate that APOBEC3G multimerizes in an RNA-dependent fashion and that RNA-APOBEC3G multimers are recruited to the plasma membrane and subsequently into virion particles by Gag.  相似文献   

13.
Luo K  Liu B  Xiao Z  Yu Y  Yu X  Gorelick R  Yu XF 《Journal of virology》2004,78(21):11841-11852
APOBEC3G exerts its antiviral activity by targeting to retroviral particles and inducing viral DNA hypermutations in the absence of Vif. However, the mechanism by which APOBEC3G is packaged into virions remains unclear. We now report that viral genomic RNA enhances but is not essential for human APOBEC3G packaging into human immunodeficiency virus type 1 (HIV-1) virions. Packaging of APOBEC3G was also detected in HIV-1 Gag virus-like particles (VLP) that lacked all the viral genomic RNA packaging signals. Human APOBEC3G could be packaged efficiently into a divergent subtype HIV-1, as well as simian immunodeficiency virus, strain mac, and murine leukemia virus Gag VLP. Cosedimentation of human APOBEC3G and intracellular Gag complexes was detected by equilibrium density and velocity sucrose gradient analysis. Interaction between human APOBEC3G and HIV-1 Gag was also detected by coimmunoprecipitation experiments. This interaction did not require p6, p1, or the C-terminal region of NCp7. However, the N-terminal region, especially the first 11 amino acids, of HIV-1 NCp7 was critical for HIV-1 Gag and APOBEC3G interaction and virion packaging. The linker region flanked by the two active sites of human APOBEC3G was also important for efficient packaging into HIV-1 Gag VLP. Association of human APOBEC3G with RNA-containing intracellular complexes was observed. These results suggest that the N-terminal region of HIV-1 NC, which is critical for binding to RNA and mediating Gag-Gag oligomerization, plays an important role in APOBEC3G binding and virion packaging.  相似文献   

14.
15.
16.
17.
18.
Hepadnaviruses are enveloped viruses, each with a DNA genome packaged in an icosahedral nucleocapsid, which is the site of viral DNA synthesis. In the presence of envelope proteins, DNA-containing nucleocapsids are assembled into virions and secreted, but in the absence of these proteins, nucleocapsids deliver viral DNA into the cell nucleus. Presumably, this step is identical to the delivery of viral DNA during the initiation of an infection. Unfortunately, the mechanisms triggering the disintegration of subviral core particles and delivery of viral DNA into the nucleus are not yet understood. We now report the identification of a sequence motif resembling a serine- or threonine-proline kinase recognition site in the core protein at a location that is required for the assembly of core polypeptides into capsids. Using duck hepatitis B virus, we demonstrated that mutations at this sequence motif can have profound consequences for RNA packaging, DNA replication, and core protein stability. Furthermore, we found a mutant with a conditional phenotype that depended on the cell type used for virus replication. Our results support the hypothesis predicting that this motif plays a role in assembly and disassembly of viral capsids.  相似文献   

19.
20.
Human cytidine deaminase apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F), like APOBEC3G, has broad antiviral activity against diverse retroelements, including Vif-deficient human immunodeficiency virus (HIV)-1. Its antiviral functions are known to rely on its virion encapsidation and be suppressed by HIV-1 Vif, which recruits Cullin5-based E3 ubiquitin ligases. However, the factors that mediate A3F virion packaging have not yet been identified. In this study, we demonstrate that A3F specifically interacts with cellular signal recognition particle (SRP) RNA (7SL RNA), which is selectively packaged into HIV-1 virions. Efficient packaging of 7SL RNA as well as A3F was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. Reducing 7SL RNA packaging by overexpression of SRP19 protein inhibited A3F virion packaging. Although A3F has been shown to interact with P bodies and viral genomic RNA, our data indicated that P bodies and HIV-1 genomic RNA were not required for A3F packaging. Thus, in addition to its well-known function in SRPs, 7SL RNA, which is encapsidated into diverse retroviruses, also participates in the innate antiviral function of host cytidine deaminases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号