首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Cell wall disassembly in ripening fruit is highly complex, involving the dismantling of multiple polysaccharide networks by diverse families of wall-modifying proteins. While it has been reported in several species that multiple members of each such family are expressed in the same fruit tissue, it is not clear whether this reflects functional redundancy, with protein isozymes from a single enzyme class performing similar roles and contributing equally to wall degradation, or whether they have discrete functions, with some isoforms playing a predominant role. Experiments reported here sought to distinguish between cell wall-related processes in ripening melon that were softening-associated and softening-independent. Cell wall polysaccharide depolymerization and the expression of wall metabolism-related genes were examined in transgenic melon (Cucumis melo var. cantalupensis Naud.) fruit with suppressed expression of the 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene and fruits treated with ethylene and 1-methylcyclopropene (1-MCP). Softening was completely inhibited in the transgenic fruit but was restored by treatment with exogenous ethylene. Moreover, post-harvest application of 1-MCP after the onset of ripening completely halted subsequent softening, suggesting that melon fruit softening is ethylene-dependent. Size exclusion chromatography of cell wall polysaccharides, from the transgenic fruits, with or without exogenous ethylene, indicated that the depolymerization of both pectins and xyloglucans was also ethylene dependent. However, northern analyses of a diverse range of cell wall-related genes, including those for polygalacturonases, xyloglucan endotransglucosylase/hydrolases, expansin, and beta-galactosidases, identified specific genes within single families that could be categorized as ethylene-dependent, ethylene-independent, or partially ethylene-dependent. These results support the hypothesis that while individual cell wall-modifying proteins from each family contribute to cell wall disassembly that accompanies fruit softening, other closely related family members are regulated in an ethylene-independent manner and apparently do not directly participate in fruit softening.  相似文献   

3.
Melting (MF) and non melting flesh (NMF) peaches differ in their final texture and firmness. Their specific characteristics are achieved by softening process and directly dictate fruit shelf life and quality. Softening is influenced by various mechanisms including cell wall reorganization and water loss. In this work, the biomechanical properties of MF Spring Crest’s and NMF Oro A’s exocarp and mesocarp along with the amount and localization of hydroxycinnamic acids and flavonoids were investigated during fruit ripening and post-harvest. The objective was to better understand the role played by water loss and cell wall reorganization in peach softening. Results showed that in ripe Spring Crest, where both cell turgor loss and cell wall dismantling occurred, mesocarp had a little role in the fruit reaction to compression and probe penetration response was almost exclusively ascribed to the epidermis which functioned as a mechanical support to the pulp. In ripe Oro A’s fruit, where cell wall disassembly did not occur and the loss of cell turgor was observed only in mesocarp, the contribution of exocarp to fruit firmness was consistent but relatively lower than that of mesocarp, suggesting that in addition to cell turgor, the integrity of cell wall played a key role in maintaining NMF fruit firmness. The analysis of phenols suggested that permeability and firmness of epidermis were associated with the presence of flavonoids and hydroxycinnamic acids.  相似文献   

4.
Auxin is one of the most prominent phytohormones regulating many aspects of fleshy fruit development including fruit set, fruit size through the control of cell division and cell expansion, and fruit ripening. To shed light on the role of auxin fruit ripening, we have previously shown that Sl-ARF4 is a major player in mediating the auxin control of sugar metabolism in tomato fruit (cv MicroTom). Further extending this study, we show here that down-regulation of Sl-ARF4 in tomato alters some ripening-related fruit quality traits including enhanced fruit density at mature stage, increased firmness, prolonged shelf-life and reduced water (weight) loss at red ripe stage. These findings suggest that Sl-ARF4 plays a role in determining fruit cell wall architecture and thus providing a potential genetic marker for improving post-harvest handling and shelf life of tomato fruits.  相似文献   

5.
Softening characteristics were investigated in three types of pear fruit, namely, European pear 'La France', Chinese pear 'Yali', and Japanese pear 'Nijisseiki'. 'La France' fruit softened dramatically and developed a melting texture during ripening, while 'Yali' fruit with and without propylene treatment showed no change in flesh firmness and texture during ripening. Non-treated 'Nijisseiki' did not show a detectable decrease in flesh firmness, whereas continuous propylene treatment caused a gradual decrease in firmness resulting in a mealy texture. In 'La France', the analysis of cell wall polysaccharides revealed distinct solubilization and depolymerization of pectin and hemicellulose during fruit softening. In 'Nijisseiki', propylene treatment led to the solubilization and depolymerization of pectic polysaccharides to a limited extent, but not of hemicellulose. In 'Yali', hemicellulose polysaccharides were depolymerized during ripening, but there was hardly any change in pectic polysaccharides except in the water-soluble fraction. PC-PG1 and PC-PG2, two polygalacturonase (PG) genes, were expressed in 'La France' fruit during ripening, while only PC-PG2 was expressed in 'Nijisseiki' and neither PC-PG1 or PC-PG2 was expressed in 'Yali'. The expression pattern of PC-XET1 was constitutive during ripening in all three pear types. PG activity measured by the reducing sugar assay increased in all three pears during ripening. However, viscometric measurements showed that the levels of endo-PG activity were high in 'La France', low in 'Nijisseiki', and undetectable in 'Yali' fruits. These results suggest that, in pears, cell wall degradation is correlated with a decrease in firmness during ripening and the modification of both pectin and hemicellulose are essential for the development of a melting texture. Furthermore, the data suggest that different softening behaviours during ripening among the three pear fruits may be caused by different endo-PG activity and different expression of PG genes.  相似文献   

6.
An expansin gene expressed in ripening strawberry fruit   总被引:29,自引:0,他引:29       下载免费PDF全文
Tissue softening accompanies the ripening of many fruit and initiates the processes of irreversible deterioration. Expansins are plant cell wall proteins proposed to disrupt hydrogen bonds within the cell wall polymer matrix. Expression of specific expansin genes has been observed in tomato (Lycopersicon esculentum) meristems, expanding tissues, and ripening fruit. It has been proposed that a tomato ripening-regulated expansin might contribute to cell wall polymer disassembly and fruit softening by increasing the accessibility of specific cell wall polymers to hydrolase action. To assess whether ripening-regulated expansins are present in all ripening fruit, we examined expansin gene expression in strawberry (Fragaria x ananassa Duch.). Strawberry differs significantly from tomato in that the fruit is derived from receptacle rather than ovary tissue and strawberry is non-climacteric. A full-length cDNA encoding a ripening-regulated expansin, FaExp2, was isolated from strawberry fruit. The deduced amino acid sequence of FaExp2 is most closely related to an expansin expressed in early tomato development and to expansins expressed in apricot fruit rather than the previously identified tomato ripening-regulated expansin, LeExp1. Nearly all previously identified ripening-regulated genes in strawberry are negatively regulated by auxin. Surprisingly, FaExp2 expression was largely unaffected by auxin. Overall, our results suggest that expansins are a common component of ripening and that non-climacteric signals other than auxin may coordinate the onset of ripening in strawberry.  相似文献   

7.
对采后番茄果实的电镜观察表明:当果实成熟衰老时,叶绿体数量减少,多数基粒结构丧失;成熟果实胞壁中胶层水解成中空的电子透明区,初生壁的纤丝也发生一定程度的水解,相邻细胞分离;外源 PG(多聚半乳糖醛酸酶)提取物处理绿熟期果实组织,也可引起胞壁结构和叶绿体发生与正常衰老相同的变化。Ca~(2+)、Mg~(2+)、Co~(2+)二价金属离子处理果实,可明显降低番茄红素含量和 PG 活性,延缓果实软化。外源乙烯处理果实,可促进番茄红素的形成,提高 PG活性,并能解除钙对 PG 活性的抑制。本文也对 PG 在乙烯和 Ca~(2+)调节果实成熟中的作用进行了讨论。  相似文献   

8.
Exo-galactanase/beta-galactosidase (EC 3.2.1.23) activity is thought to be responsible for the loss of galactosyl residues from the cell walls of ripening tomatoes. Transgenic tomato plants (Lycopersicon esculentum Mill cv. Ailsa Craig) with reduced exo-galactanase/beta-galactosidase mRNA were generated to test this hypothesis and to investigate the role of the enzyme in fruit softening. A previously identified tomato beta-galactosidase cDNA clone, TBG1, was used in the experiments. Heterologous expression of the clone in yeast demonstrated that TBG1 could release galactosyl residues from tomato cell wall galactans. Transgenic plants showed a reduction in TBG1 mRNA to 10% of normal levels in the ripening fruits. However, despite the reduction in message, total beta-galactosidase and exo-galactanase activities were unaffected. Furthermore, there was no apparent effect on levels of cell wall galactosyl residues when compared with the control. It was concluded that during the ripening of tomato fruits a family of beta-galactosidases capable of degrading cell wall galactans are active and down-regulation of TBG1 message to 10% was insufficient to alter the degree of galactan degradation.  相似文献   

9.
It has been reported that PG is a key enzyme related to the tomato fruit ripening. In this study tomato fruits were harvested at the mature-green stage and stored at room temperature. The cell ultrastructure of pericarp tissue was observed at different ripening stages, and the effects of treatments with ethylene and calcium on PG activity and fruit ripening were examined. The object of this study is to elucidate the role of PG in regulation of tomato fruit ripening by ethylene and calcium. PG activity, was undetectable at mature-green stage, but it rose rapidly as fruif ripening. The rise in PG activity was coincided with the dechnmg of fruit firmness during ripening of tomato fruits. The observation of cell ultrastructure showed that the most of grana in chloroplast were lost and the mitochondrial cristae decreased as fruit ripening. Striking changes of cell wall structure was most noted, beginning with dissolution of the middle lamella and eventual disruption of primary cell wall. A similar pattern of changes of cell wall and chloroplast have been observed in pericarp tissue treated with PG extract. In fruits treated with calcium and other divalent metal ions atmature-green stage, the lycopene content and PG activity decreased dramatically. Ethylene application enhanced the formation of lycopene and PG activity. The inhibition of Ca2+ on PG ac ivity was removed by ethylene. Based on the above results, it was demonstrated that PG played a major role in ripening of tomato fruits, and suggested that the regulation of fruit ripening by ethylene and Ca2+ was all mediated by PG. PG induced the hydrolysis of cell wall and released the other hydrolytic enzymes, then effected the ripening processes follow up.  相似文献   

10.
The impact of genetic and fruit ripening on hemicelluloses fine structure was studied in twelve near isogenic lines of tomato fruits harboring firmness QTL. The sugar composition and the MALDI-TOF MS oligosaccharides profile after glucanase hydrolysis of the cell walls were determined from all green and red fruits pericarp tissue. MS profiles showed two major series of oligomers attributed to xyloglucan (XG) and glucomannan (GM) with minor peaks for xylan and ions attributed to galacto-oligomers. The oligosaccharides MS intensity varied significantly with the fruit genetic and ripening status. Correlations between MS intensity indicated structural regulations of both XG and GM structures with genetics and ripening. These results point to a region on the tomato chromosome 9 controlling cell wall galactose metabolism.  相似文献   

11.
Fruit cuticle composition and their mechanical performance have a special role during ripening because internal pressure is no longer sustained by the degraded cell walls of the pericarp but is directly transmitted to epidermis and cuticle which could eventually crack. We have studied fruit growth, cuticle modifications and its biomechanics, and fruit cracking in tomato; tomato has been considered a model system for studying fleshy fruit growth and ripening. Tomato fruit cracking is a major disorder that causes severe economic losses and, in cherry tomato, crack appearance is limited to the ripening process. As environmental conditions play a crucial role in fruit growing, ripening and cracking, we grow two cherry tomato cultivars in four conditions of radiation and relative humidity (RH). High RH and low radiation decreased the amount of cuticle and cuticle components accumulated. No effect of RH in cuticle biomechanics was detected. However, cracked fruits had a significantly less deformable (lower maximum strain) cuticle than non‐cracked fruits. A significant and continuous fruit growth from mature green to overripe has been detected with special displacement sensors. This growth rate varied among genotypes, with cracking‐sensitive genotypes showing higher growth rates than cracking‐resistant ones. Environmental conditions modified this growth rate during ripening, with higher growing rates under high RH and radiation. These conditions corresponded to those that favored fruit cracking. Fruit growth rate during ripening, probably sustained by an internal turgor pressure, is a key parameter in fruit cracking, because fruits that ripened detached from the vine did not crack.  相似文献   

12.
13.
Fruit softening is associated with cell wall disassembly mediated by the action of a complex set of enzymes and proteins. Expansins, a group of proteins with unknown enzymatic activity, are proposed to be involved in this process. In order to study the involvement of expansins in strawberry fruit softening we have analyzed the expression level of five expansin mRNAs (FaEXP1, FaEXP2, FaEXP4, FaEXP5 and FaEXP6) in the cultivars "Selva", "Camarosa" and "Toyonaka", which differ in fruit firmness during ripening. We have found a correlation between mRNA expression levels and fruit firmness for FaEXP1, FaEXP2 and FaEXP5. For these three mRNAs we have observed higher expression levels in the softest cultivar (Toyonaka) than in the other two firmer cultivars (Selva and Camarosa) at the beginning of ripening. This correlation was not found in the case of FaEXP4 and FaEXP6, although both genes displayed a different expression pattern in the three cultivars analyzed. Western-blot analysis revealed that the accumulation of expansin proteins begins earlier in the softest cultivar during ripening.  相似文献   

14.

Background

One of the main factors that reduce fruit quality and lead to economically important losses is oversoftening. Textural changes during fruit ripening are mainly due to the dissolution of the middle lamella, the reduction of cell-to-cell adhesion and the weakening of parenchyma cell walls as a result of the action of cell wall modifying enzymes. Pectins, major components of fruit cell walls, are extensively modified during ripening. These changes include solubilization, depolymerization and the loss of neutral side chains. Recent evidence in strawberry and apple, fruits with a soft or crisp texture at ripening, suggests that pectin disassembly is a key factor in textural changes. In both these fruits, softening was reduced as result of antisense downregulation of polygalacturonase genes. Changes in pectic polymer size, composition and structure have traditionally been studied by conventional techniques, most of them relying on bulk analysis of a population of polysaccharides, and studies focusing on modifications at the nanostructural level are scarce. Atomic force microscopy (AFM) allows the study of individual polymers at high magnification and with minimal sample preparation; however, AFM has rarely been employed to analyse pectin disassembly during fruit ripening.

Scope

In this review, the main features of the pectin disassembly process during fruit ripening are first discussed, and then the nanostructural characterization of fruit pectins by AFM and its relationship with texture and postharvest fruit shelf life is reviewed. In general, fruit pectins are visualized under AFM as linear chains, a few of which show long branches, and aggregates. Number- and weight-average values obtained from these images are in good agreement with chromatographic analyses. Most AFM studies indicate reductions in the length of individual pectin chains and the frequency of aggregates as the fruits ripen. Pectins extracted with sodium carbonate, supposedly located within the primary cell wall, are the most affected.  相似文献   

15.
阿拉伯糖是果实软化过程中变化最明显的细胞壁糖残基之一,α-L-阿拉伯呋喃糖苷酶是导致细胞壁多糖中阿拉伯糖残基降解的主要糖苷酶。为阐明该酶在香蕉果实成熟软化中的作用,实验对香蕉贮藏过程中果皮和果肉中该酶活性以及果实硬度、呼吸强度和乙烯释放量的变化进行了研究。结果表明:α-L-阿拉伯呋喃糖苷酶在果实初期的变化很小,到果实硬度开始急剧下降时达到最大,增加量达10倍以上,且果肉中的酶活性大于果皮中;乙烯吸收剂处理延缓了香蕉果实呼吸和乙烯高峰的出现时间,降低了果实硬度、果皮和果肉中α-L-阿拉伯呋喃糖苷酶活性变化的速度和幅度。以上结果表明α-L-阿拉伯呋喃糖苷酶起诱导香蕉果实成熟的作用,在果实的软化中起着十分重要的作用,且其活性受乙烯的调节。  相似文献   

16.
The control of growth rate and the mechanical integrity of the tomato (Lycopersicon esculentum Mill.) fruit has been attributed to the exocarp. This study focused on the biomechanics of the fruit skin (FS) comprising cuticle, epidermis and a few subdermal cell layers, and the enzymatically isolated cuticular membrane (CM) during fruit growth and ripening. Morphology and mechanical properties of the FS and the CM of three cultivars were analysed separately at three distinct ripening stages by scanning electron microscopy (SEM) and one-dimensional tension testing, respectively. Both were subject to significant cultivar-specific changes. Thickness of the CM increased during ripening from 7.8-8.6 to 9.9-15.7 microm and exceeded by far that of the epidermal cell wall. The mechanical properties, such as modulus of elasticity, strength, and failure strain, were highest in the FS for all cultivars at any stage, with only one exception; however, the cuticle largely mirrored these properties throughout fruit maturation. Stiffness of both isolated CM and FS increased from immature to fully ripe fruits for all cultivars, while failure stress and failure strain displayed a tendency to decrease for two of them. Stress-strain behaviour of the CM could be described as strain softening, mostly linear elastic throughout, and strain hardening, and was subject to growth-related changes. The FS displayed strain hardening throughout. The results indicate evidence for the cuticle to become increasingly important as a structural component for the integrity of the tomato fruit in addition to the epidermis. A supplementary putative model for tomato fruit growth is proposed.  相似文献   

17.
柿果实采后软化过程中细胞壁组分代谢和超微结构的变化   总被引:17,自引:0,他引:17  
柿果实采后果胶酯酶活性迅速上升,其活性与果实硬度的下降呈明显的负相关。多聚半乳糖醛酸酶活性增加缓慢,但其活性与果实硬度的下降无明显相关性。β-半乳糖苷酶活性迅速增加,其活性与果实硬度的下降呈明显的负相关。纤维素酶活性呈逐渐上升趋势,与果实硬度的下降也呈明显的负相关。伴随着细胞壁水解酶活性的增加,果实原果胶和纤维素含量迅速下降,而水溶性果胶含量则迅速上升。柿果刚采收时细胞壁结构完整,3d后细胞壁中胶层基本被溶解,甚至初生壁也局部发生降解。  相似文献   

18.
The Charentais variety of melon (Cucumis melo cv Reticulatus F1 Alpha) was observed to undergo very rapid ripening, with the transition from the preripe to overripe stage occurring within 24 to 48 h. During this time, the flesh first softened and then exhibited substantial disintegration, suggesting that Charentais may represent a useful model system to examine the temporal sequence of changes in cell wall composition that typically take place in softening fruit. The total amount of pectin in the cell wall showed little reduction during ripening but its solubility changed substantially. Initial changes in pectin solubility coincided with a loss of galactose from tightly bound pectins, but preceded the expression of polygalacturonase (PG) mRNAs, suggesting early, PG-independent modification of pectin structure. Depolymerization of polyuronides occurred predominantly in the later ripening stages, and after the appearance of PG mRNAs, suggesting the existence of PG-dependent pectin degradation in later stages. Depolymerization of hemicelluloses was observed throughout ripening, and degradation of a tightly bound xyloglucan fraction was detected at the early onset of softening. Thus, metabolism of xyloglucan that may be closely associated with cellulose microfibrils may contribute to the initial stages of fruit softening. A model is presented of the temporal sequence of cell wall changes during cell wall disassembly in ripening Charentais melon.  相似文献   

19.
Excessive softening is the main factor limiting fruit shelf life and storage. Transgenic plants modified in the expression of cell wall modifying proteins have been used to investigate the role of particular activities in fruit softening during ripening, and in the manufacture of processed fruit products. Transgenic experiments show that polygalacturonase (PG) activity is largely responsible for pectin depolymerization and solubilization, but that PG-mediated pectin depolymerization requires pectin to be de-methyl-esterified by pectin methylesterase (PME), and that the PG -subunit protein plays a role in limiting pectin solubilization. Suppression of PG activity only slightly reduces fruit softening (but extends fruit shelf life), suppression of PME activity does not affect firmness during normal ripening, and suppression of -subunit protein accumulation increases softening. All these pectin-modifying proteins affect the integrity of the middle lamella, which controls cell-to-cell adhesion and thus influences fruit texture. Diminished accumulation of either PG or PME activity considerably increases the viscosity of tomato juice or paste, which is correlated with reduced polyuronide depolymerization during processing. In contrast, suppression of -galactosidase activity early in ripening significantly reduces fruit softening, suggesting that the removal of pectic galactan side-chains is an important factor in the cell wall changes leading to ripening-related firmness loss. Suppression or overexpression of endo-(1\to4)-d-glucanase activity has no detectable effect on fruit softening or the depolymerization of matrix glycans, and neither the substrate nor the function for this enzyme has been determined. The role of xyloglucan endotransglycosylase activity in softening is also obscure, and the activity responsible for xyloglucan depolymerization during ripening, a major contributor to softening, has not yet been identified. However, ripening-related expansin protein abundance is directly correlated with fruit softening and has additional indirect effects on pectin depolymerization, showing that this protein is intimately involved in the softening process. Transgenic work has shown that the cell wall changes leading to fruit softening and textural changes are complex, and involve the coordinated and interdependent activities of a range of cell wall-modifying proteins. It is suggested that the cell wall changes caused early in ripening by the activities of some enzymes, notably -galactosidase and ripening-related expansin, may restrict or control the activities of other ripening-related enzymes necessary for the fruit softening process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号