首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
2.
Visfatin has recently been identified as a novel visceral adipokine which may be involved in obesity-related vascular disorders. However, it is not known whether visfatin directly contributes to endothelial dysfunction. Here, we investigated the effect of visfatin on vascular inflammation, a key step in a variety of vascular diseases. Visfatin induced leukocyte adhesion to endothelial cells and the aortic endothelium by induction of the cell adhesion molecules, ICAM-1 and VCAM-1. Promoter analysis revealed that visfatin-mediated induction of CAMs is mainly regulated by nuclear factor-kappaB (NF-kappaB). Visfatin stimulated IkappaBalpha phosphorylation, nuclear translocation of the p65 subunit of NF-kappaB, and NF-kappaB DNA binding activity in HMECs. Furthermore, visfatin increased ROS generation, and visfatin-induced CAMs expression and NF-kappaB activation were abrogated in the presence of the direct scavenger of ROS. Taken together, our results demonstrate that visfatin is a vascular inflammatory molecule that increases expression of the inflammatory CAMs, ICAM-1 and VCAM-1, through ROS-dependent NF-kappaB activation in endothelial cells.  相似文献   

3.
Integrity of the blood-brain barrier is essential for the normal functioning of CNS. Its disruption contributes to the pathobiology of various inflammatory neurodegenerative disorders. We have shown that the HMG-CoA reductase inhibitor (lovastatin) attenuated experimental autoimmune encephalomyelitis (EAE, an inflammatory disease of CNS) in rodents by inhibiting the infiltration of mononuclear cells into the CNS. Here, using an in vitro system, we report that lovastatin inhibits endothelial-monocyte cell interaction by down-regulating the expression of vascular cell adhesion molecule-1 and E-selectin by inhibiting the phosphoinositide 3 kinase (PI3-kinase)/protein kinase B (Akt)/nuclear factor-kappa B (NF-kappaB) pathway in endothelial cells. It inhibits tumor necrosis factor alpha (TNFalpha)-induced PI3-kinase, Akt and NF-kappaB activation in these cells. Co-transfection of constitutively active forms of PI3-kinase and Akt reversed the lovastatin-mediated inhibition of TNFalpha-induced adhesion, as well as activation of NF-kappaB, indicating the involvement of the PI3-kinase/Akt pathway in the interaction of adhesion molecules and the process of adhesion. This study reports that lovastatin down-regulates the pathway affecting the expression and interaction of adhesion molecules on endothelial cells, which in turn restricts the migration and infiltration of mononuclear cells thereby attenuating the pathogenesis of inflammatory diseases.  相似文献   

4.
5.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

6.
7.
Cell adhesion molecules expressed on endothelial cells in inflamed skin appear to be controlled by the actions of cytokines and reactive oxygen species. However, molecular mechanisms of the expression of adhesion molecules during skin inflammation are currently not well understood. To evaluate the role of antioxidants and nitric oxide in modulating inflammatory processes in the skin, we examined the effects of pyrrolidine dithiocarbamate (PDTC, 0.1 mM) and spermine NONOate (Sper-NO, 1 mM) on adhesion molecule expression and nuclear factor kappa B (NF-kappaB) activation induced by TNF-alpha (10 ng/ml) in cultured human dermal microvascular endothelial cells (HDMEC). Treatment of cells with TNF-alpha for 4 h significantly induced the surface expression of E-selectin and intercellular adhesion molecule-1 (ICAM-1). Treatment with TNF-alpha for 8 h significantly induced the surface expression of E-selectin, ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1). The up-regulation of these adhesion molecules was suppressed significantly by pretreatment with PDTC or Sper-NO for 1 h. The mRNA expression of E-selectin, ICAM-1 and VCAM-1, and activation of NF-kappaB induced by TNF-alpha for 2 h were significantly decreased by the above two pretreatments. N-acetylcysteine (10 mM) and S-nitroso-N-acetylpenicillamine (1 mM) had no significant inhibitory effects on the cell surface and mRNA expression of these adhesion molecules stimulated by TNF-alpha. These findings indicate that both cell surface and mRNA expression of adhesion molecules in HDMEC induced by TNF-alpha are inhibited significantly by pretreatment with PDTC or Sper-NO, possibly in part through blocking the activation of NF-kappaB. These results suggest a potential therapeutic approach using antioxidant agents or nitric oxide pathway modulators in the treatment of inflammatory skin diseases.  相似文献   

8.
Expression of cell adhesion molecule in endothelial cells upon activation by human immunodeficiency virus (HIV) infection is associated with the development of atherosclerotic vasculopathy. We postulated that induction of vascular cell adhesion molecule-1 (VCAM-1) by HIV-1 Tat protein in endothelial cells might represent an early event that could culminate in inflammatory cell recruitment and vascular injury. We determined the role of HIV-1 Tat protein in VCAM-1 expression in human pulmonary artery endothelial cells (HPAEC). HIV-1 Tat protein treatment significantly increased cell-surface expression of VCAM-1 in HPAEC. Consistently, mRNA expression of VCAM-1 was also increased by HIV-1 Tat protein as measured by RT-PCR. HIV-1 Tat protein-induced VCAM-1 expression was abolished by the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) and the p38 MAPK inhibitor SB-203580. Furthermore, HIV-1 Tat protein enhanced DNA binding activity of NF-kappaB, facilitated nuclear translocation of NF-kappaB subunit p65, and increased production of reactive oxygen species (ROS). Similarly to VCAM-1 expression, HIV-1 Tat protein-induced NF-kappaB activation and ROS generation were abrogated by PDTC and SB-203580. These data indicate that HIV-1 Tat protein is able to induce VCAM-1 expression in HPAEC, which may represent a pivotal early molecular event in HIV-induced vascular/pulmonary injury. These data also suggest that the molecular mechanism underlying the HIV-1 Tat protein-induced VCAM-1 expression may involve ROS generation, p38 MAPK activation, and NF-kappaB translocation, which are the characteristics of pulmonary endothelial cell activation.  相似文献   

9.
Human immunodeficiency virus (HIV)-1 Tat released from HIV-1-infected monocytes is believed to enter other cells via an integrin-facilitated pathway, resulting in altered gene expression. Indeed, exogenous Tat protein can increase cell adhesion molecule gene expression in human endothelial cells. Signaling pathways initiated by Tat in endothelial cells are not known. We evaluated the ability of endogenous tat to stimulate monocyte adhesion via activation of nuclear factor-kappaB (NF-kappaB) within human umbilical vein endothelial cells. Transfection with pcTat, but not control vector DNA, increased NF-kappaB binding activity, NF-kappaB luciferase reporter activity, and monocyte adhesion. pcTat also increased kappaB-dependent HIV-1-LTR-CAT reporter activity 28-fold compared with a 3-fold increase produced by transfection with an equivalent amount of pcTax (from human leukemia virus). The pcTat-induced increase in pNF-kappaB-Luc activity and monocyte adhesion to endothelial cells was blocked by cotransfection with dominant-negative mutant IkappaBalpha and by incubation with 10 mM aspirin. We conclude that monocyte adhesion to human endothelial cells stimulated by pcTat is mediated via an NF-kappaB-dependent mechanism. Furthermore, inhibition studies using aspirin suggest that pcTat-stimulated NF-kappaB activation and monocyte adhesion occur via a redox-sensitive mechanism.  相似文献   

10.
Adhesion and migration of leukocytes into the surrounding tissues is a crucial step in inflammation, immunity, and atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. Butyrate, a natural short-chain fatty acid produced by bacterial fermentation of dietary fiber, has been attributed with anti-inflammatory activity in inflammatory bowel disease. Butyrate in vitro is active in colonocytes and several other cell types. We have studied the effect of butyrate on expression of endothelial leukocyte adhesion molecules by cytokine-stimulated human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with butyrate-inhibited tumor necrosis factor-alpha (TNFalpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) in a time and concentration-dependent manner. Butyrate at 10 mM/L inhibited interleukin-1 (IL-1)-stimulated VCAM-1 and ICAM-1 expression. The effect of butyrate on cytokine-stimulated VCAM-1 expression was more pronounced than in the case of ICAM-1. Butyrate decreased TNFalpha-induced expression of mRNA for VCAM-1 and ICAM-1. Suppressed expression of VCAM-1 and ICAM-1 was associated with reduced adherence of monocytes and lymphocytes to cytokine-stimulated HUVEC. Butyrate inhibited TNFalpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVEC. Finally, butyrate enhanced peroxisome proliferator-activated receptor-alpha (PPARalpha) expression in HUVEC. These results demonstrate that butyrate may have anti-inflammatory properties not only in colonocytes but also in endothelial cells. The anti-inflammatory and (perhaps) antiatherogenic properties of butyrate may partly be attributed to an effect on activation of NF-kappaB and PPARalpha and to the associated expression of VCAM-1 and ICAM-1. The present findings support further investigations on the therapeutic benefits of butyrate in several pathological events involving leukocyte recruitment.  相似文献   

11.
12.
13.
Activation and dysfunction of the endothelium underlie many vascular disorders including atherosclerosis, tumor growth, and inflammation. We recently reported that thrombin and vascular endothelial growth factor, but not tumor necrosis factor-alpha, results in dramatic up-regulation of Down syndrome critical region (DSCR)-1 gene in endothelial cells, a negative feedback regulator of calcineurin-NFAT signaling. Constitutive expression of DSCR-1 in activated endothelial cells markedly impaired NFAT nuclear localization, proliferation, tube formation, and tumor growth. The goal of the present study was to elucidate the relative roles of NFAT/DSCR-1 and NF-kappaB/I-kappaB in mediating thrombin-responsive gene expression in endothelial cells. DNA microarrays of thrombin-treated human umbilical vein endothelial cells overexpressing DSCR-1 or constitutive active IkappaBalpha revealed genes that were dependent on NFAT and/or NF-kappaB activity. Vascular cell adhesion molecule-1 was inhibited both by DSCR-1 and I-kappaB at the level of mRNA, protein, promoter activity, and function (monocyte adhesion). Using a combination of transient transfections, electrophoretic mobility shift assays, and chromatin immunoprecipitation, thrombin was shown to induce time-dependent coordinate binding of RelA and NFATc to a tandem NF-kappaB element in the upstream promoter region of vascular cell adhesion molecule-1. Together, these findings suggest that thrombin-mediated activation of endothelial cells involves an interplay between NFAT and NF-kappaB signaling pathways and their negative feedback inhibitors, DSCR-1 and I-kappaB, respectively. As natural brakes in the inflammatory process, DSCR-1 and I-kappaB may lend themselves to therapeutic manipulation in vasculopathic disease states.  相似文献   

14.
15.
Endothelial-monocyte interactions are regulated by adhesion molecules and key in the development of vascular inflammatory disease. Peroxisome proliferator-activated receptor (PPAR) γ activation in endothelial cells is recognized to mediate anti-inflammatory effects that inhibit monocyte rolling and adhesion. Herein, evidence is provided for a novel mechanism for the anti-inflammatory effects of PPARγ ligand action that involves inhibition of proinflammatory cytokine-dependent up-regulation of endothelial N-glycans. TNFα treatment of human umbilical vein endothelial cells increased surface expression of high mannose/hybrid N-glycans. A role for these sugars in mediating THP-1 or primary human monocyte rolling and adhesion was indicated by competition studies in which addition of α-methylmannose, but not α-methylglucose, inhibited monocyte rolling and adhesion during flow, but not under static conditions. This result supports the notion that adhesion molecules provide scaffolds for sugar epitopes to mediate adhesion with cognate receptors. A panel of structurally distinct PPARγ agonists all decreased TNFα-dependent expression of endothelial high mannose/hybrid N-glycans. Using rosiglitazone as a model PPARγ agonist, which decreased TNFα-induced high mannose N-glycan expression, we demonstrate a role for these carbohydrate residues in THP-1 rolling and adhesion that is independent of endothelial surface adhesion molecule expression (ICAM-1 and E-selectin). Data from N-glycan processing gene arrays identified α-mannosidases (MAN1A2 and MAN1C1) as targets for down-regulation by TNFα, which was reversed by rosiglitazone, a result consistent with altered high mannose/hybrid N-glycan epitopes. Taken together we propose a novel anti-inflammatory mechanism of endothelial PPARγ activation that involves targeting protein post-translational modification of adhesion molecules, specifically N-glycosylation.  相似文献   

16.
17.
Cell adhesion molecules, particularly intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM-1) and E-selectin, play important roles in the recruitment of leukocytes to the site of inflammation. Blocking the expression of these molecules or preventing their interaction with the receptors has been shown to be important in controlling various inflammatory diseases. These cell adhesion molecules are induced on endothelial cells by various proinflammatory cytokines like IL-1beta and TNF-alpha and also by bacterial LPS. We demonstrate here that 1,4-Dihydroxyxanthone (1,4 DHX) inhibits the expression of cell adhesion molecules, such as ICAM-1, VCAM-1 and E-selectin, on endothelial cells in a concentration and time dependent manner. The inhibition by 1,4 DHX is reversible. On further analysis, our results also show that 1,4 DHX inhibits the adhesion of peripheral neutrophils to the endothelial cell monolayers. 1,4 DHX, therefore, could be used as a novel target for controlling various pathological conditions associated with upregulation of endothelial leukocyte adhesion molecules.  相似文献   

18.
Diabetes mellitus is associated with an increased prevalence of endothelial dysfunction and development of atherosclerotic vascular diseases. We demonstrate here that hyperglycemia results in the expression of adhesion molecules on endothelial cells in vitro. Incubation of human umbilical vein endothelial cells (HUVEC) in a culture medium with 11.0 mM, 16.5 mM and 22.0 mM glucose concentrations induced the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and endothelial-leukocyte adhesion molecule-1 (ELAM-1). This effect was detectable after 24 h incubation of HUVEC with a high glucose concentration. The effect of high glucose concentration on TNF-alpha induced expression of ELAM-1, VCAM-1 and ICAM-1 was negligible, if at all. These results show that even a short-term exposure of endothelial cells (ECs) to high glucose concentration leads to their activation associated with increased expression of adhesion molecules such as ELAM-1, VCAM-1 and ICAM-1.  相似文献   

19.
20.
Polychlorinated biphenyls (PCBs) may contribute to the pathology of atherosclerosis by activating inflammatory responses in vascular endothelial cells. Endothelial nitric oxide synthase (eNOS) is colocalized with caveolae and is a critical regulator of vascular homeostasis. PCBs may be proatherogenic by causing dysfunctional eNOS signaling. The objective of this study was to investigate the role of caveolin-1 in PCB-induced endothelial dysfunction with a focus on mechanisms associated with eNOS signaling. Cells derived from an immortalized human vascular endothelial cell line were treated with PCB77 to study nitrotyrosine formation through eNOS signaling. Phosphorylation studies of eNOS, caveolin-1, and kinases, such as Src, phosphatidylinositol 3-kinase (PI3K), and Akt, were conducted in cells containing either functional or small-interfering RNA-silenced caveolin-1 protein. We also investigated caveolin-1-regulated mechanisms associated with PCB-induced markers of peroxynitrite formation and DNA binding of NF-kappaB. Cellular exposure to PCB77 increased eNOS phosphorylation and nitric oxide production, as well as peroxynitrite levels. A subsequent PCB-induced increase in NF-kappaB DNA binding may have implications in oxidative stress-mediated inflammatory mechanisms. The activation of eNOS by PCB77 treatment was blocked by inhibitors of the Src/PI3K/Akt pathway. PCB77 also increased phosphorylation of caveolin-1, indicating caveolae-dependent endocytosis. Caveolin-1 silencing abolished both the PCB-stimulated Akt and eNOS phosphorylation, suggesting a regulatory role of caveolae in PCB-induced eNOS signaling. These findings suggest that PCB77 induces eNOS phosphorylation in endothelial cells through a Src/PI3K/Akt-dependent mechanism, events regulated by functional caveolin-1. Our data provide evidence that caveolae may play a critical role in regulating vascular endothelial cell activation and toxicity induced by persistent environmental pollutants such as coplanar PCBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号