首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of methotrexate into the LNCaP human prostate cancer cells was linear for the first 60 min. The initial rate of methotrexate uptake was highest at extracellular pH 4.5 and decreased markedly until pH 7.0 to 8.0. Transport of methotrexate into LNCaP cells showed two components, one saturable -K(m) = 0.13 +/- 0.06 microM and V(max) = 1.20 +/- 0.16 pmol x 45 min(-1) x mg(-1) protein at low concentrations and the other apparently not saturable up to 10 microM. Uptake of methotrexate was inhibited by structural analogs with the K(i) values being 6.53, 12.4, and 85.6 microM for 5-formyltetrahydrofolate, 5-methyltetrahydrofolate, and folic acid, respectively. Uptake of methotrexate into LNCaP cells was not inhibited by the energy poisons in contrast to methotrexate uptake into PC-3 prostate cancer cells. Uptake was inhibited by increasing concentrations of sulfate and phosphate ions and by the organic anions probenecid and DIDS, suggesting that methotrexate may be transported by an anion-exchange mechanism. These results show that methotrexate is transported into LNCaP prostate cancer cells by a carrier-mediated process.  相似文献   

2.
Antiandrogen-induced cell death in LNCaP human prostate cancer cells   总被引:1,自引:0,他引:1  
Antiandrogens such as Casodex (Bicalutamide) are designed to treat advance stage prostate cancer by interfering with androgen receptor-mediated cell survival and by initiating cell death. Treatment of androgen sensitive, non-metastatic LNCaP human prostate cancer cells with 0-100 microM Casodex or 0-10 ng/ml TNF-alpha induces cell death in 20-60% of the cells by 48 h in a dose-dependent manner. In cells treated with TNF-alpha, this is accompanied by the loss of mitochondrial membrane potential (DeltaPsim) and cell adhesion. In contrast, cells treated with Casodex display loss of cell adhesion, but sustained mitochondrial dehydrogenase activity. Overexpression of Bcl-2 in LNCaP cells attenuates the induction of cell death by TNF-alpha but not Casodex, suggesting that mitochondria depolarization is not required for the induction of cell death by Casodex. While both TNF-alpha and Casodex-induced release of cytochrome c in LNCaP cell is predominantely associated with the translocation and cleavage of Bax, our data also suggest that Casodex induces cell death by acting on components downstream of decline of DeltaPsim and upstream of cytochrome c release. Furthermore, while induction of both caspase-3 and caspase-8 activities are observed in TNF-alpha and Casodex-treated cells, a novel cleavage product of procaspase-8 is seen in Casodex-treated cells. Taken together, these data support the hypothesis that Casodex induces cell death by a pathway that is independent of changes in DeltaPsim and Bcl-2 actions and results in an extended lag phase of cell survival that may promote the induction of an invasive phenotype after treatment.  相似文献   

3.
4.
Selcer KW  Kabler H  Sarap J  Xiao Z  Li PK 《Steroids》2002,67(10):821-826
The enzyme steryl sulfatase may help support the growth of hormone-dependent tumors, including prostate cancers, by facilitating the conversion of circulating precursor steroids to active hormones. We sought to determine the presence of steryl sulfatase activity in the androgen-dependent human prostate cancer cell line LNCaP, and to determine if this activity was inhibited by known steryl sulfatase inhibitors. Intact LNCaP cultures had steryl sulfatase activity, as determined by conversion of [3H]estrone sulfate (E(1)S) to unconjugated steroids. The level of steryl sulfatase activity was relatively low (4.6 pmol/18 h/million cells) compared to MDA-MB-231 breast cancer cells (284.0 pmol/18 h/million cells). The observed activity in both cell lines was blocked by addition of 1 microM estrone sulfamate (EMATE), an active-site-directed, steroidal inhibitor of steryl sulfatase. Steryl sulfatase activity was also inhibited by Danazol, and by (p-O-sulfamoyl)-tetradecanoyl tyramine (C2-14), a non-steroidal inhibitor. Microsomes prepared from LNCaP cultures also showed steryl sulfatase activity, as determined by hydrolysis of [3H]E(1)S and [3H]dehydroepiandrosterone sulfate (DHEAS) to unconjugated forms. LNCaP and MDA-MB-231 microsomes both hydrolyzed E(1)S about two times faster than DHEAS. Hydrolysis of E(1)S in LNCaP and MDA-MB-231 microsomes was blocked by steryl sulfatase inhibitors with the following relative potencies: EMATE>C2-14>Danazol. These data demonstrate that LNCaP prostate cancer cells contain a steryl sulfatase with properties similar to that found in human breast cancer cells, and that the activity of this enzyme can be blocked by known steryl sulfatase inhibitors. Steryl sulfatase inhibitors may be useful as an adjuvant to androgen deprivation therapy for prostate cancer.  相似文献   

5.
Certain indirubin derivatives are potent cyclin-dependent kinase (CDK) and glycogen synthase kinase (GSK-3β) inhibitors and may be effective against various cancers. We evaluated the effects of aloisine A, alsterpaullone, aminopurvalanol, indirubin-3′-oxime, 6-Br-indirubin-3′-oxime, kenpaullone, olomoucine and roscovitine on cell proliferation, prostate-specific antigen (PSA) expression, androgen receptor (AR) activation, and GSK-3β and β-catenin expression in androgen-dependent LNCaP human prostate cancer cells. Effects were also evaluated in MDA-kb2 human breast cancer cells containing an AR-responsive luciferase construct. Steroid-deprived LNCaP cells were exposed to indirubins ± dihydrotestosterone (DHT, 0.1 nM) and cell proliferation was assessed by MTT assay after 120 h. PSA expression was determined by real-time quantitative RT-PCR after 24 h. Cytoplasmic and nuclear GSK-3β/β-catenin expression and phosphorylation status was determined by Western blotting. Effects on MDA-kb2 luciferase expression were determined after 24 h using Steady-Glo (Promega). Indirubin-3′-oxime, 6-Br-indirubin-3′-oxime, alsterpaullone and kenpaullone increased LNCaP cell proliferation and PSA expression (0.03–1 μM; apoptosis occurred >1 μM), whereas aminopurvalanol significantly (p < 0.05) reduced DHT-stimulated PSA expression (31%) at 1 nM. The other indirubin derivatives had no effect. The same was observed for induction of AR-dependent MDA-kb2 luciferase expression. Kenpaullone (1, 3 μM) decreased the active- and increased the inactive form of cytoplasmic GSK-3β, and increased nuclear AR and β-catenin accumulation. Flutamide (10 μM), unexpectedly, also strongly increased nuclear β-catenin accumulation. Indirubin derivatives that were potent GSK-3β inhibitors (relative to CDK1) stimulated LNCaP cell proliferation and other androgenic responses, suggesting (in a cancer treatment context) these compounds may increase AR-dependent prostate cancer growth if not used within an appropriate therapeutic dose-range.  相似文献   

6.
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.  相似文献   

7.
Prostate cancer is the most commonly diagnosed neoplasm in men. LNCaP cells continue to possess many of the molecular characteristics of in situ prostate cancer. These cells lack ras mutations, and mitogen-activated protein kinase (MAPK) is not extensively phosphorylated in these cells. To determine the effects of ras/raf/MAPK pathway activation in these cells, we transfected LNCaP cells with an activatable form of c-raf-1(deltaRaf-1:ER). Activation of deltaRaf-1:ER, with resultant MAPK activation, reduced plating efficiency and soft agarose cloning efficiency 30-fold in LNCaP cells. Cell cycle distribution showed an accumulation of cells in G1 and was associated with the induction of CDK inhibitor p21WAF1/CIP1 at the protein and mRNA levels. p21WAF1/CIP1 mRNA stability was increased after deltaRaf-1:ER activation. In addition, activated deltaRaf-1:ER induced the senescence associated-beta-galactosidase in LNCaP cells. These data demonstrate that raf activation can activate growth inhibitory pathways leading to growth suppression in prostate carcinoma cells and also suggest that raf/MEK/MAPK pathway activation, rather than inhibition, may be a therapeutic target for some human prostate cancer cells.  相似文献   

8.
Hormonal interactions in human prostate tumor LNCaP cells   总被引:2,自引:0,他引:2  
Melatonin, the hormone secreted by the pineal gland at night, has recently been found to attenuate growth and viability of benign human prostate epithelial cells. Estradiol suppressed these responses by efflecting a protein kinase C mediated inactivation of melatonin receptors. In the present study, the effects of melatonin on growth and viability of the human androgen-sensitive prostatic tumor cell line-LNCaP and the influence of estradiol on these responses were explored. Melatonin inhibited 3H-thymidine incorporation into LNCaP cells at physiological concentrations. This response decayed within 24 h. The inactivation of the response slowed down in the presence of the protein kinase C inhibitor GF-109203X. Estradiol also inhibited 3H-thymidine incorporation and its effects were additive to those of melatonin. Suppression of DNA content was observed in cells treated for 2 days with melatonin (0.1 nM); this suppression was maintained for longer periods in the presence than in the absence of estradiol. In addition, estradiol and melatonin slightly and additively decreased cell viability. These results demonstrate for the first time a direct interaction of melatonin with androgen-sensitive prostate tumor cells leading to attenuation of cell growth. They also show that unlike in benign prostate epithelial cells, estrogen attenuates LNCaP cell growth and supports rather than inactivates melatonin's action.  相似文献   

9.
Caffeic acid and its naturally occurring derivative caffeic acid phenethyl ester (CAPE) have antiproliferative and cytotoxic properties in a variety of cancer cell lines without displaying significant toxicity toward healthy cells, and are considered to be potential anticancer agents. However, little is known about their effects on prostate cancer cells. We synthesized and evaluated the effects of caffeic acid, CAPE (2) and 18 synthetic derivatives on cell viability and androgen-dependent cell proliferation, subcellular localisation and expression of androgen receptor (AR) and secretion of prostate-specific antigen (PSA) in LNCaP human hormone-dependent prostate cancer cells. Several synthetic derivatives of CAPE were strong, concentration-dependent cytotoxic agents in LNCaP cells with IC50 values in the 6.8–26.6 μM range, potencies that were up to five-fold greater than that of CAPE (33.7 ± 4.0 μM). A number of caffeic acid derivatives were inhibitors of androgen-stimulated LNCaP cell proliferation with concomitant inhibition of DHT-stimulated PSA secretion. Compound 24 was the most cytotoxic and antiproliferative caffeic acid derivative (IC50 values of 6.8 ± 0.3 and 2.4 ± 0.8 μM, respectively) inhibiting DHT-stimulated cell proliferation and PSA secretion statistically significantly at concentrations as low as 0.3 μM. Exposure to DHT increased cytoplasmic and nuclear AR levels and co-treatment with increasing concentrations of compound 24 or CAPE (2), notably, further increased these levels. In conclusion, a number of synthetic derivatives of caffeic acid are potent inhibitors of androgen-dependent prostate cancer cell proliferation and viability, acting, at least in part, via an antiandrogenic mechanism that involves increased nuclear accumulation of (presumably inactive) AR.  相似文献   

10.
LNCaP prostate cancer cells are resistant to induction of apoptosis by gamma-irradiation and partially sensitive to TNF-alpha or FAS antibody, irradiation sensitizes cells to apoptosis induced by FAS antibody or TNF-alpha. LNCaP cell clones stably expressing IkappaBalpha super repressor were resistant to apoptosis induced by death ligands in the presence or absence of irradiation. IkappaBalpha super repressor expression also increased clonogenic survival after exposure to TNF-alpha+irradiation, but had no effect on survival after irradiation alone. IkappaBalpha super repressor expression blocked the increase of whole cell and cell surface FAS expression induced by TNF-alpha, but did not effect induction of FAS expression and cell surface FAS expression that resulted from irradiation. In cells expressing IkappaBalpha super repressor there was diminished activation of caspases-8 and -7 and diminished production of proscaspases-8 and -7, usually required for death induction in LNCaP cells. Peptide inhibitors of caspase activation complemented the IkappaBalpha super repressor inhibition of apoptosis, but peptide inhibitors of serine proteases had no effect on LNCaP cells expressing IkappaBalpha super repressor. Moreover, cleavage of a serine protease substrate was induced by treatment of LNCaP cells with TNF-alpha and irradiation. The data suggest that in LNCaP cells NF-kappaB mediates a proapoptotic pathway that leads to activation of proapoptotic serine proteases.  相似文献   

11.
Prostate cancer is an age-related disease that is linked to the inability of prostate cells to accumulate zinc following transformation. It is shown in the present study that the basal percentage of normal prostate cells expressing senescence-associated beta-galactosidase (SA-beta-gal) is higher than that of the cancer cells. In the presence of high zinc in the cell culture medium, the percentage of normal prostate cells expressing the SA-beta-gal increased but not that of the cancer cells. Increased intracellular zinc occurs in the prostate cancer cells treated with supraphysiologic concentration of zinc but it does not induce senescence or decrease the telomerase activities in these cells. Senescence, however, occurred when the prostate cancer cells DNA is damaged by irradiation. These findings suggest that prostate cancer cells are insensitive to the senescence-inducing effects of zinc but the cancer cells retain the capacity to undergo senescence through other pathways.  相似文献   

12.
The process of cancer development consists of three sequential stages termed initiation, promotion, and progression. Oxidative stress damages DNA and introduces mutations into oncogenes or tumor suppressor genes, thus contributing to cancer development. Cancer chemoprevention is defined to prevent or delay the development of cancer by the use of natural or synthetic substances. In the present study, we synthesized a series of organoselenium compounds and evaluated their possible chemopreventive properties in human prostate cancer LNCaP cells. Among 42 organoselenium compounds tested, two compounds, 3-selena-1-dethiacephem 13 and 3-selena-1-dethiacephem 14 strongly activated the Nrf2/ARE (antioxidant response element) signaling and thus markedly increased expression of heme oxygenase-1 (HO-1), a phase II antioxidant enzyme. Translocation of Nrf2 to the nucleus preceded HO-1 protein induction by two compounds. The intracellular ROS level was strongly reduced immediately after treatment with these compounds, showing that they are potent antioxidants. Finally, both compounds inhibited cell growth via cell cycle arrest. Our findings suggest that compounds 13 and 14 could not only attenuate oxidative stress through Nrf2/ARE activation and direct ROS scavenging but also inhibit cell growth. Thus, these compounds possess the potential as pharmacological agents for chemoprevention of human prostate cancer.  相似文献   

13.
Prostate cancer is the second leading cause of cancer deaths among men in the United States. Studies show that people with diets rich in tomato-based foods have reduced risks of cancer, viz., prostate cancer. This is attributed, in part, to lycopene, the most abundant carotenoid in tomatoes. Thus, we studied the effect of lycopene at physiologically attainable concentrations on apoptosis, cellular proliferation, and necrosis in LNCaP human prostate cancer cells. Cells at 37 degrees C and >80% confluency were treated with media alone (0.32% tetrahydrofuran vehicle) or with increasing concentrations (0.3-3.0 microM) of lycopene overnight. After washing monolayers, analyses by high-performance liquid chromatography (HPLC) showed that cellular accumulation of lycopene was 5.5 +/- 0.8, 14.0 +/- 3.2, and 36.7 +/- 12.3 pmole/10(6) cells for 0.3, 1.0, and 3.0 muM, respectively, and not detected in control cells. Lycopene did not alter cellular proliferation because bromodeoxyuridine (BrdU) incorporation and cell numbers were identical among groups. However, results of a 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay showed that mitochondrial function decreased 61%-83% with increasing concentrations of lycopene (P < 0.001). Cytotoxicity and necrosis did not contribute to this effect because lactate dehydrogenase (LDH) release (1.5%-1.8%) and trypan blue exclusion (89%-93%) were similar. Subsequently, we demonstrated that increasing concentrations of lycopene significantly (P < 0.05) reduced mitochondrial transmembrane potential, induced the release of mitochondrial cytochrome c, and increased annexin V binding, confirming induction of apoptosis. Thus, lycopene at physiologically relevant concentrations did not affect cellular proliferation or promote necrosis but clearly altered mitochondrial function and induced apoptosis in LNCaP human prostate cancer cells.  相似文献   

14.
《Cytotherapy》2023,25(1):33-45
Background aimsMesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be “polarized” by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported.MethodsIn this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists.ResultsIn these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro.ConclusionsTLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.  相似文献   

15.
Apoptosis inhibition rather than enhanced cellular proliferation occurs in prostate cancer (CaP), the most commonly diagnosed malignancy in American men. Therefore, it is important to characterize residual apoptotic pathways in CaP cells. When intracellular Ca(2+) stores are released and plasma membrane "store-operated" Ca(2+) entry channels subsequently open, cytosolic [Ca(2+)] increases and is thought to induce apoptosis. However, cells incapable of releasing Ca(2+) stores are resistant to apoptotic stimuli, indicating that Ca(2+) store release is also important. We investigated whether release of intracellular Ca(2+) stores is sufficient to induce apoptosis of the CaP cell line LNCaP. We developed a method to release stored Ca(2+) without elevating cytosolic [Ca(2+)]; this stimulus induced LNCaP cell apoptosis. We compared the apoptotic pathways activated by intracellular Ca(2+) store release with the dual insults of store release and cytosolic [Ca(2+)] elevation. Earlier processing of caspases-3 and -7 occurred when intracellular store release was the sole Ca(2+) perturbation. Apoptosis was attenuated in both conditions in stable transfected cells expressing antiapoptotic proteins Bclx(L) and catalytically inactive caspase-9, and in both scenarios inactive caspase-9 became complexed with caspase-7. Thus, intracellular Ca(2+) store release initiates an apoptotic pathway similar to that elicited by the dual stimuli of cytosolic [Ca(2+)] elevation and intracellular store release.  相似文献   

16.
A wide spectrum of anti-cancer activity of genistein and beta-lapachone in various tumors has been reported in single treatments. In this study the combined effects of genistein and beta-lapachone on the chemosensitivity of LNCaP and PC3 human prostate cancer cells was determined in vitro, using 3-[4,5-dimethylthiazol-2-yl]-2-,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) to study treatment-induced growth inhibition and cytotoxicity and, annexin V-fluoresceine (FI) and terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-propidium iodide (PI) assays to determine potential treatment-induced apoptosis and/or necrosis. The results showed: i) that both PC3 and LNCaP are sensitive to single and combination treatments regardless of hormone sensitivity status, ii) that treatment induced dual death pathways (apoptosis and necrosis) in both cell types, iii) that growth inhibition in both cell types correlated positively with cell death via apoptosis at lower drug concentrations and necrosis at higher concentrations, iv) that combination of genistein and beta-lapachone had synergistic inhibitory effects on growth and proliferation in both cell types. The synergistic inhibitory effect was correlated positively with treatment-induced cell death via apoptosis and necrosis. The overall results indicate that combination treatments with beta-lapachone and genistein are more potent in killing both PC3 and LNCaP cancer cells than treatment with either genistein or beta-lapachone alone. beta-lapachone acts at the G1 and S phase checkpoints in the cell cycle, while genistein induces cell cycle arrest at the G2-M stage. The current results are therefore in agreement with the hypothesis that drug combinations that target cell cycles at different critical checkpoints would be more effective in causing cell death. This result provides a rationale for in vivo studies to determine whether beta-lapachone-genistein combination will provide effective chemotherapy for prostate cancer, regardless of the tumor sensitivity to hormone.  相似文献   

17.
Using an in vitro osteogenic culture system, we carried out a restriction fragment differential display (RFDD-PCR) to identify genes expressed by these cells in their undifferentiated stage and not expressed, or expressed at a lower level, in a closely related but distinct cell type: bone marrow stromal cells (BMSC)-derived osteoblasts (BDO). Forty-seven candidate regulated genes, selected by RFDD, were analyzed by RT-PCR analysis in three cell clones and in primary cultures from seven different donors. A subset of three genes were confirmed as upregulated in BMSC relative to BDO in every primary culture and cloned population examined: betaIG-h3, IGFbp3, and LOXL2. Their differential expression was confirmed by Northern analysis and the corresponding proteins were detected by immunolocalization in BMSC.  相似文献   

18.
In the United States, the primary cancer in elderly men is prostate cancer (33% of newly diagnosed malignancies), but the prevalence is 75% lower in some Mediterranean countries. A possible explanation for the large difference in prostate cancer cases is that in Mediterranean countries the diet includes fish, olive oil and high amounts of nuts, fruits, vegetables, along with a regular intake of wine with meals several times per week. The LNCaP prostate cancer cells represent the nonaggressive androgen-dependent cell model that expresses moderate levels of cyclooxygenase-2 (COX-2). Epidemiological evidence indicates that polyphenolic compounds in diets are protective against cancer, and cyanidin and kaempferol are abundant in wine and plants. Therefore, the objective of the investigation was to determine the effects of cyanidin and kaempferol on prostaglandin E2 (PGE2) and COX-2 protein levels, and if peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear factor kappaB (NFkappaB) are involved in the expression of COX-2 in prostate cancer cells. Cyanidin and kaempferol at 1 microM reduced the level of PGE2 in LNCaP cell cultures and also attenuated the effect of arachidonic acid on increasing the amount of PGE2. Cyanidin reduced the levels of COX-2 protein in a dose- and time-dependent fashion. PPARgamma mRNA levels were lower in cells treated after 24 h with kaempferol (0.1 and 1 microM) and cyanidin (1 microM). The reduction of COX-2 mRNA by kaempferol and cyanidin may be mediated through the actions of NFkappaB and PPARgamma as nuclear factors that bind to the COX-2 gene promoter.  相似文献   

19.
Serum levels of the adrenal androgen dehydroepiandrosterone (DHEA) peak in men and women in the third decade of life and decrease progressively with age. Increasing numbers of middle-aged and older individuals consume over-the-counter preparations of DHEA, hoping it will retard aging by increasing muscle and bone mass and strength, decreasing fat, and improving immunologic and neurobehavioral functions. Because DHEA can serve as a precursor to more potent androgens and estrogens, like testosterone (T), dihydrotestosterone (DHT), and 17beta-estradiol (E2), supplemental DHEA use may pose a cancer risk in patients with nascent or occult prostate cancer. The steroid-responsive human LNCaP prostate cancer cells, containing a functional but mutated androgen receptor (AR), were used to compare effects of DHEA with those of T, DHT, and E2 on cell proliferation and protein and/or gene expression of AR, prostate-specific antigen (PSA), IGF-I, IGF-I receptor (IGF-IR), IGF-II, IGF-binding proteins-2, -3, and -5, (IGFBPs-2, -3, and -5), and estrogen receptor-beta (ERbeta). Cell proliferation assays revealed significant stimulation by all four steroids. DHEA- and E2-induced responses were similar but delayed and reduced compared with that of T and DHT. All four hormones increased gene and/or protein expression of PSA, IGF-IR, IGF-I, and IGFBP-2 and decreased that of AR, ERbeta, IGF-II, and IGFBP-3. There were no significant effects of hormone treatment on IGFBP-5 mRNA. DHEA and E2 responses were similar, and distinct from those of DHT and T, in time- and dose-dependent studies. Further studies of the mechanisms of DHEA effects on prostate cancer epithelial cells of varying AR status, as well as on prostate stromal cells, will be required to discern the implications of DHEA supplementation on prostatic health.  相似文献   

20.
Animal and epidemiological studies point to a cancer preventive/therapeutic role for tomato products and its antioxidant, lycopene. It is hypothesized that lycopene will behave as an antioxidant at low concentrations and as a prooxidant at high concentrations in LNCaP human prostate cancer cell culture systems. We characterized the antioxidant, and prooxidant effects of a hexane extract of tomato paste (TP) and water solubilized lycopene at different concentrations using a prostate cancer cell line. Placebo (5% triglyceride, Roche Inc.) was used as a control. After 6, 24 hr and 48 hr incubation, LNCaP cells were harvested and used for each measurement. Cellular proliferation was determined using the MTT colorimetric assay. Lycopene and TP hexane extract inhibited cell growth in a dose-dependent (0.1-50 microM lycopene) manner and growth inhibition was 55% and 35% at 1 microM lycopene and TP hexane extract, respectively after 48 hr incubation. The levels of 8-hydroxydeoxyguanosine/deoxyguanosine (an oxidative DNA damage product) was significantly increased starting at 5 microM lycopene from both TP hexane extract and pure lycopene after 24 and 48 hr incubation with no protection at the lower concentrations. Malondialdehyde formation (a lipid peroxidation product measured by HPLC separation of the MDA-TBA adduct) was significantly reduced at low concentrations (0.1-1 microM) of lycopene in all treatments. Clinically relevant concentrations of lycopene and the tomato fraction containing lycopene significantly reduced LNCaP cancer cell survival which can only be partially explained by increased DNA damage at high lycopene concentrations (> 5 microM). Low concentrations of lycopene acted as a lipid antioxidant but did not protect DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号