首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal hyperplasia is a key feature of the common skin disorder psoriasis. Stimulation of epidermal keratinocytes by insulin-like growth factor I (IGF-I) is essential for cell division, and increased sensitivity to IGF-I may occur in psoriasis. We hypothesized that inhibition of IGF-I receptor expression in the psoriasis lesion would reverse psoriatic epidermal hyperplasia by slowing the rate of keratinocyte cell division. Here we report the use of C5-propynyl-dU,dC-phosphorothioate antisense oligonucleotides to inhibit IGF-I receptor expression in keratinocytes. We identified several inhibitory antisense oligonucleotides and demonstrated IGF-I receptor inhibition in vitro through an mRNA targeting mechanism. Repeated injection of these oligonucleotides into human psoriasis lesions, grafted onto nude mice, caused a dramatic normalization of the hyperplastic epidermis. The findings indicate that IGF-I receptor stimulation is a rate-limiting step in psoriatic epidermal hyperplasia and that IGF-I receptor targeting by cutaneous administration of antisense oligonucleotides forms the basis of a potential new psoriasis therapy.  相似文献   

2.
Yu XJ  Li CY  Wang KY  Dai HY 《Regulatory peptides》2006,137(3):134-139
Psoriasis is a chronic disease characterized by abnormal epidermal proliferation, inflammation and angiogenesis. The pathogenetic process resulting in hypervascularity remains to be further investigated. It has been reported that a potent angiogenic factor, vascular endothelial growth factor (VEGF) is overexpressed in psoriatic epidermis and that the level of calcitonin gene-related peptide (CGRP) is elevated in psoriasis lesions and CGRP-containing neuropeptide nerve fibers are denser in the psoriatic epidermis. We hypothesized that CGRP might regulate the expression of VEGF by human keratinocytes. VEGF expression in the CGRP-treated human keratinocytes was investigated and the CGRP signaling pathways were examined with respect to VEGF expression. The mRNA and protein levels of VEGF by CGRP were increased in a concentration-dependent manner. However, this increase was abrogated by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor PD98059. The CGRP-mediated VEGF induction was also effectively inhibited by a pretreatment with the CGRP receptor antagonist CGRP 8-37. In addition, CGRP treatment induced rapid phosphorylation of ERK1/2, PD98059 and CGRP 8-37 were able to inhibit CGRP-induced ERK1/2 phosphorylation. These results suggest that CGRP regulates the expression of VEGF through the CGRP receptor and ERK1/2 MAPK signaling pathway in human HaCaT keratinocytes.  相似文献   

3.
4.
Decoy receptor 3 (DcR3) is a soluble receptor of Fas ligand (FasL), LIGHT (TNFSF14) and TNF-like molecule 1A (TL1A) and plays pleiotropic roles in many inflammatory and autoimmune disorders and malignant diseases. In cutaneous biology, DcR3 is expressed in primary human epidermal keratinocytes and is upregulated in skin lesions in psoriasis, which is characterized by chronic inflammation and angiogenesis. However, the regulatory mechanisms of DcR3 over-expression in skin lesions of psoriasis are unknown. Here, we demonstrate that DcR3 can be detected in both dermal blood vessels and epidermal layers of psoriatic skin lesions. Analysis of serum samples showed that DcR3 was elevated, but FasL was downregulated in psoriatic patients compared with normal individuals. Additional cell studies revealed a central role of epidermal growth factor receptor (EGFR) in controlling the basal expression of DcR3 in keratinocytes. Activation of EGFR by epidermal growth factor (EGF) and transforming growth factor (TGF)-α strikingly upregulated DcR3 production. TNF-α?enhanced DcR3 expression in both keratinocytes and endothelial cells compared with various inflammatory cytokines involved in psoriasis. Additionally, TNF-α-enhanced DcR3 expression in keratinocytes was inhibited when EGFR was knocked down or EGFR inhibitor was used. The NF-κB pathway was critically involved in the molecular mechanisms underlying the action of EGFR and inflammatory cytokines. Collectively, the novel regulatory mechanisms of DcR3 expression in psoriasis, particularly in keratinocytes and endothelial cells, provides new insight into the pathogenesis of psoriasis and may also contribute to the understanding of other diseases that involve DcR3 overexpression.  相似文献   

5.
6.
7.
The presence and localization of immuno-analogues of human erythrocyte protein 4.1 and spectrin were examined in the epidermis of psoriasis vulgaris. Immunoblot analysis with antibodies against human erythrocyte protein 4.1 revealed that psoriatic epidermis contains a 4.1-like protein of 80 kDa, and also minor immunoreactive polypeptides, including a 45-kDa polypeptide. The 45-kDa band was not detected in non-lesional epidermis. Lesional epidermis of psoriasis contains spectrin-like proteins of 240 kDa. Analysis with immunofluorescence microscopy revealed that 4.1-like proteins were detected mainly in the cytoplasm of the suprabasal cells in lesional epidermis and in the peripheral cytoplasm of the basal cells in non-lesional epidermis. On the other hand, spectrin-like proteins were localized to the peripheral cytoplasm of basal keratinocytes in both lesional and non-lesional psoriatic epidermis. The present results indicate that proteins related to protein 4.1 and spectrin are consistently detected within epidermal cells of psoriasis, a chronic skin disease characterized by epidermal hyperplasia; the expression and distribution of protein 4.1 in lesional epidermis of psoriasis differs from that in non-lesional epidermis. These membrane skeletal proteins may be of significance in the hyperproliferative epidermis of psoriasis.  相似文献   

8.
Campbell L  Gumbleton M 《IUBMB life》2000,50(6):361-364
A preliminary retrospective immunocytochemical study was conducted examining the expression of caveolin-1 in skin biopsies resected from clinically defined psoriatic subjects. These pilot investigations revealed a dramatic down-regulation of caveolin-1 (a protein product of the caveolin supergene family known to regulate signal transduction events and cell cycle dynamics) in the hyperproliferative basal regions of the epidermis in all psoriatic biopsies examined when compared to normal control samples. These results lead us to hypothesise that caveolin-1 negatively regulates key signal transduction pathways in epidermal keratinocytes and through it's reduced expression in psoriasis, pertubations in keratinocyte cell signalling and abnormal cell differentiation ensue, events fundamental to the development of the psoriatic phenotype. Novel therapeutic strategies for the treatment of psoriasis based upon caveolin-1 protein can be envisaged.  相似文献   

9.
N-3 polyunsaturated fatty acids (n-3 PUFAs), and in particular docosahexaenoic acid (DHA), have many beneficial metabolic effects, including reducing epidermal thickness in patients with psoriasis. The positive impacts of DHA in psoriasis could be mediated by its interactions with the PPAR signaling pathway, as well as by its secretion of anti-inflammatory bioactive metabolites, but the detailed metabolism is still not understood. In the present study, we evaluated the influence of DHA on the main features of psoriasis and its effects on the PPAR signaling pathway, in a psoriatic in vitro skin model. Healthy and psoriatic skin substitutes were produced according to the tissue-engineered self-assembly method, using culture media supplemented with 10 μM of DHA. The presence of DHA led to a reduction in the abnormal cell differentiation of psoriatic keratinocytes, seen in the increased expression of filaggrin and keratin 10. DHA was incorporated into the membrane phospholipids of the epidermis and transformed principally into eicosapentaenoic acid (EPA). Furthermore, the addition of DHA into the culture medium led to a decrease in the levels of lipid mediators derived from n-6 PUFAs, mainly prostaglandin E2 (PGE2) and 12-hydroxyeicosatetraenoic acid (12-HETE). Finally, DHA supplementation rebalanced the expression of PPAR receptors and caused a decrease in the secretion of TNF-α. Altogether, our results show that DHA possesses the ability to attenuate the psoriatic characteristics of psoriatic skin substitutes, mostly by restoring epidermal cell differentiation and proliferation, as well as by reducing inflammation.  相似文献   

10.
Transforming growth factor-beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation and its effects on growth and differentiation have been extensively characterized in cultured keratinocytes. We used two TGF beta 1-specific polyclonal antibodies (anti-LC and anti-CC) to determine the presence of TGF beta 1 peptide in keratinocytes in sections of normal human skin in situ and in both plaque and nonplaque skin from individuals with psoriasis. In contrast to the differentiation phenotype expressed by keratinocytes in normal epidermis, keratinocytes in the psoriatic plaque exhibit a hyperproliferative/regenerative differentiation phenotype. Anti-TGF beta 1 staining was observed primarily in the epidermis. Anti-LC TGF beta 1 antibody stained nonproliferating, differentiated suprabasal keratinocytes intracellularly in normal skin but did not stain psoriatic plaques from five of seven patients. In contrast, anti-CC TGF beta 1 antibody stained suprabasal keratinocytes extracellularly in psoriatic plaques, but did not stain normal skin. Both anti-LC and anti-CC stained suprabasal keratinocytes intracellularly in nonplaque psoriatic skin. Thus, the conformation or structure of TGF beta 1 and its localization vary in keratinocytes with distinct differentiation phenotypes suggesting that TGF beta 1 is a potential modulator of keratinocyte differentiation in vivo. Selective association of TGF beta 1 with nonproliferating keratinocytes in the suprabasal layers of the epidermis and its exclusion from the proliferating keratinocytes in the basal layer suggest that it may be a physiological regulator of keratinocyte proliferation. In addition, the intracellular localization of TGF beta 1 peptide in both normal and psoriatic keratinocytes suggests that it is constitutively synthesized by epidermal keratinocytes in vivo.  相似文献   

11.
In situ hybridization with full length mouse cellular retinoic acid-binding protein type 1 and cellular retinoic acid-binding protein type 2 cDNA derived RNA probes showed overexpression of cellular retinoic acid-binding protein type 2 mRNA in lesional hyperplastic psoriatic skin whereas cellular retinoic acid-binding protein type 1 mRNA was undetectable. This suggests that the previously reported increase of cellular retinoic acid-binding protein in psoriatic epidermis corresponds to increased translation of cellular retinoic acid-binding protein type 2 gene. Cellular retinoic acid-binding protein types 1 and 2 mRNAs were not detectable in normal epidermis; however, type 2 message was detected in non-hyperplastic, non-lesional skin of psoriatic patients thus before altered epidermal differentiation and hyperplasia are morphologically detectable.  相似文献   

12.
Vascular endothelial growth factor (VEGF) promotes angiogenesis and plays important roles both in physiological and pathological conditions. VEGF receptors (VEGFRs) are high-affinity receptors for VEGF and are originally considered specific to endothelial cells. We previously reported that VEGFRs were also constitutively expressed in normal human keratinocytes and overexpressed in psoriatic epidermis. In addition, UVB can activate VEGFRs in normal keratinocytes, and the activated VEGFR-2 signaling is involved in the pro-survival mechanism. Here, we show that VEGFRs were also upregulated and activated by UVA in normal human keratinocytes via PKC, and interestingly, both the activated VEGFR-1 and VEGFR-2 protected against UVA-induced cell death. As VEGFRs were over-expressed in psoriatic epidermis, we further investigated whether narrowband UVB (NB-UVB) phototherapy or topical halomethasone monohydrate 0.05% cream could affect their expression. Surprisingly, the over-expressed VEGFRs in psoriatic epidermis were significantly attenuated by both treatments. During NB-UVB therapy, VEGFRs declined first in the basal, and then gradually in the upper psoriatic epidermis. VEGFRs were activated in psoriatic epidermis, their activation was enhanced by NB-UVB, but turned undetectable after whole therapy. This process was quite different from that by halomethasone, in which VEGFRs and phospho-VEGFRs decreased in a gradual, homogeneous manner. Our findings further suggest that UV-induced activation of VEGFRs serves as a pro-survival signal for keratinocytes. In addition, VEGFRs may be involved in the pathological process of psoriasis, and UV phototherapy is effective for psoriasis by directly modulating the expression of VEGFRs.  相似文献   

13.
Psoriasis is a chronic inflammatory disorder of the skin characterized by epidermal hyperplasia and infiltration of leukocytes into the dermis and epidermis. T cell-derived cytokines, such as IFN-γ and IL-17A, play a major role in the psoriasis-associated epidermal hyperplasia, even though factors/mechanisms that regulate the production of these cytokines are not fully understood. We have recently shown that IL-21 is synthesized in excess in psoriatic skin lesions and causes epidermal hyperplasia when injected intradermally in mice. Moreover, in the human psoriasis SCID mouse model, neutralization of IL-21 reduces both skin thickening and expression of inflammatory molecules, thus supporting the pathogenic role of IL-21 in psoriasis. However, the basic mechanism by which IL-21 promotes skin pathology remains unknown. In this study, we show that CD4(+) cells accumulate early in the dermis of IL-21-treated mice and mediate the development of epidermal hyperplasia. Indeed, IL-21 fails to induce skin damage in RAG1-deficient mice and CD4(+) cell-depleted wild-type mice. The majority of CD4(+) cells infiltrating the dermis of IL-21-treated mice express IFN-γ and, to a lesser extent, IL-17A. Studies in cytokine knockout mice show that IFN-γ, but not IL-17A, is necessary for IL-21-induced epidermal hyperplasia. Finally, we demonstrate that IFN-γ-producing CD4(+) cells infiltrating the human psoriatic plaque express IL-21R, and abrogation of IL-21 signals reduces IFN-γ expression in cultures of psoriatic CD4(+) cells. Data indicate that IL-21 induces an IFN-γ-dependent pathogenic response in vivo, thus contributing to elucidate a mechanism by which IL-21 sustains skin-damaging inflammation.  相似文献   

14.
Keratinocyte differentiation program leading to an organized epidermis plays a key role in maintaining the first line of defense of the skin. Epidermal integrity is regulated by a tight communication between keratinocytes and leucocytes, particularly under cytokine control. Imbalance of the cytokine network leads to inflammatory diseases such as psoriasis. Our attempt to model skin inflammation showed that the combination of IL-17A, IL-22, IL-1α, OSM and TNFα (Mix M5) synergistically increases chemokine and antimicrobial-peptide expression, recapitulating some features of psoriasis. Other characteristics of psoriasis are acanthosis and down-regulation of keratinocyte differentiation markers. Our aim was to characterize the specific roles of these cytokines on keratinocyte differentiation, and to compare with psoriatic lesion features. All cytokines decrease keratinocyte differentiation markers, but IL-22 and OSM were the most powerful, and the M5 strongly synergized the effects. In addition, IL-22 and OSM induced epidermal hyperplasia in vitro and M5 induced epidermal thickening and decreased differentiation marker expression in a mouse model, as observed in human psoriatic skin lesions. This study highlights the precise role of cytokines in the skin inflammatory response. IL-22 and OSM more specifically drive epidermal hyperplasia and differentiation loss while IL-1α, IL-17A and TNFα were more involved in the activation of innate immunity.  相似文献   

15.
The plasminogen activator (PA) proteolytic cascade has been implicated in the regulation of cell activities, including proliferation and differentiation, both of which occur continuously in normal human epidermis and are aberrant in psoriatic epidermis. To elucidate further the mechanisms by which PA is regulated in epidermis, we evaluated the levels of PA inhibitors type 1 (PAI-1) and type 2 (PAI-2) in normal and psoriatic epidermis. PAI-2, but not PAI-1, was detectable by mRNA, antigen, and activity assays, indicating that PAI-2 is the predominant epidermal PA inhibitor. In situ hybridization revealed that PAI-2 mRNA occurred throughout normal epidermis, although the signal was most intense in the granular layers. Similarly, PAI-2 antigen was most prominent in the granular layers; its distribution in these differential layers was along the cell periphery. Diffuse, fainter staining for PAI-2 was also detected in the basal cells and in some spinous layers of normal epidermis. Extracts of normal epidermis contained PA inhibitory activity identified as PAI-2 by immunoprecipitation with specific antibody. In psoriatic epidermis, PAI-2 mRNA and antigen were most prominent in the more superficial layers beneath the cornified cells. As with normal epidermis, PAI-2 assumed a pericellular distribution in the psoriatic cells. These data demonstrate that PAI-2 is constitutively expressed in vivo by keratinocytes in human epidermis and indicate that this protein is the predominant inhibitor of PA activity in normal and psoriatic human epidermis.  相似文献   

16.
The purpose of the study was to explore serum pancreatic lipase activity and the serum lipid profile in relation to peripheral blood dendritic cell subsets and disease severity in males with psoriasis.

Material and methods

The study population consisted of 22 normolipidemic males with psoriasis and 12 aged-matched and body mass index (BMI)-matched healthy males. The percentages of peripheral blood dendritic cell (DC) subsets were evaluated using appropriate monoclonal antibodies and flow cytometry. The serum pancreatic lipase activity and the lipid profile were determined using standard enzymatic and colorimetric techniques.

Results

Pancreatic lipase activity was increased (p = 0.56421), high-density lipoprotein (HDL)-cholesterol concentration (p = 0.00584) was significantly decreased, triglyceride (p = 0.00766) and VLDL-cholesterol (p = 0.00765) levels were significantly increased in serum of psoriatic patients compared to controls. The serum pancreatic lipase activity showed significant correlation with serum triglyceride (r = 0.42; p = 0.04721) and serum VLDL-cholesterol levels (r = 0.42; p = 0.04721) in psoriatic individuals. In psoriatic patients the percentage of myeloid DCs was increased (p = 0.54932), the percentage of lymphoid DCs was decreased (p = 0.14210) and myeloid DC/lymphoid DC ratio was significantly increased (p = 0.03569) compared to healthy individuals.

Conclusion

The direct cause of the abnormal lipid profile in psoriasis and its relationship with the immune system disturbances remains unclear. The reciprocal relationship between serum pancreatic activity and serum triglyceride level appears to confirm the hypothesis about abnormal lipid metabolism in psoriasis.  相似文献   


17.
In this study, we investigated the expression and putative role of Sox9 in epidermal keratinocyte. Immunohistochemical staining showed that Sox9 is predominantly expressed in the basal layer of normal human skin epidermis, and highly expressed in several skin diseases including psoriasis, basal cell carcinoma, keratoacanthoma and squamous cell carcinoma. In calcium-induced keratinocyte differentiation model, the expression of Sox9 was decreased in a time dependent manner. When Sox9 was overexpressed using a recombinant adenovirus, cell growth was enhanced, while the expression of differentiation-related genes such as loricrin and involucrin was markedly decreased. Similarly, when rat skin was intradermally injected with the adenovirus expressing Sox9, the epidermis was thickened with increase of PCNA positive cells, while the epidermal differentiation was decreased. Finally, UVB irradiation induced Sox9 expression in cultured human epidermal keratinocytes, and keratinocytes are protected from UVB-induced apoptosis by Sox9 overexpression. Together, these results suggest that Sox9 is an important regulator of epidermal keratinocytes with putative pro-proliferation and/or pro-survival functions, and may be related to several cutaneous diseases that are characterized by abnormal differentiation and hyperproliferation.  相似文献   

18.
Proliferation kinetics of epidermal cells from normal human skin and lesions of psoriasis (benign epidermal hyperplasia) were studied in vitro. Epithelial out-growths were obtained from skin explants and the cell cycle studied using the conventional method of following two successive curves of labeled mitoses after an initial pulse with 3H thymidine. The length of Tc was 59 hr and 53.5 hr respectively for normal and psoriatic cells. The shorter Tc for psoriasis was due to a shorter duration of S. The growth fraction was 66% and 74% for normal and psoriatic cells respectively as determined by continuous labeling with 3H thymidine. Under the conditions of the present experiments, therefore, normal and psoriatic epidermal cells showed no significant difference in proliferative capacity.  相似文献   

19.
In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present in the basal layer of the interfollicular epidermis and in the bulge region of the hair follicle play a critical role for normal tissue maintenance. In wound healing, multipotent epidermal stem cells contribute to re-epithelization. It is possible that defects in growth control of either epidermal stem cells or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells.  相似文献   

20.
S100A8 and S100A9 are known to be up-regulated in hyperproliferative and psoriatic epidermis, but their function in epidermal keratinocytes remains largely unknown. Here we show that (1) S100A8 and S100A9 are secreted by cultured normal human keratinocytes (NHK) in a cytokine-dependent manner, (2) when applied to NHK, recombinant S100A8/A9 (a 1:1 mixture of S100A8 and S100A9) induced expression of a number of cytokine genes such as IL-8/CXCL8, CXCL1, CXCL2, CXCL3, CCL20, IL-6, and TNFalpha that are known to be up-regulated in psoriatic epidermis, (3) the S100A8/A9-induced cytokines in turn enhanced production and secretion of S100A8 and S100A9 by NHK, and (4) S100A8 and S100A8/A9 stimulated the growth of NHK at a concentration as low as 1 ng/ml. These results indicate the presence of a positive feedback loop for growth stimulation involving S100A8/A9 and cytokines in human epidermal keratinocytes, implicating the relevance of the positive feedback loop to the etiology of hyperproliferative skin diseases, including psoriasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号