首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Utilizing a new method for modeling furanose pseudorotation (D. A. Pearlman and S.-H. Kim, J. Biomol. Struct. Dyn. 3, 85 (1985)) and the empirical multiple correlations between nucleic acid torsion angles we derived in the previous report (D. A. Pearlman and S.-H. Kim, previous paper in this issue), we have made an energetic examination of the entire conformational spaces available to two nucleic acid oligonucleotides: d(ApApApA) and ApApApA. The energies are calculated using a semi-empirical potential function. From the resulting body of data, energy contour map pairs (one for the DNA molecule, one for the RNA structure) have been created for each of the 21 possible torsion angle pairs in a nucleotide repeating unit. Of the 21 pairs, 15 have not been reported previously. The contour plots are different from those made earlier in that for each point in a particular angle-angle plot, the remaining five variable torsion angles are rotated to the values which give a minimum energy at this point. The contour maps are overall quite consistent with the experimental distribution of oligonucleotide data. A number of these maps are of particular interest: delta (C5'-C4'-C3'-O3')-chi (O4'-C1'-N9-C4), where the energetic basis for an approximately linear delta-chi correlation can be seen: zeta (C3'-O3'-P-O5')-delta, in which the experimentally observed linear correlation between zeta and delta in DNA(220 degrees less than zeta less than 280 degrees) is clearly predicted; zeta-epsilon (C4'-C3'-O3'-P), which shows that epsilon increases with decreasing zeta less than 260 degrees; alpha (O3'-P-O5'-C5')-gamma (O5'-C5'-C4'-C3') where a clear linear correlation between these angles is also apparent, consistent with experiment; and several others. For the DNA molecule studied here, the sugar torsion delta is predicted to be the most flexible, while for the RNA molecule, the greatest amount of flexibility is expected to reside in alpha and gamma. Both the DNA and RNA molecules are predicted to be highly polymorphic. Complete energy minimization has been performed on each of the minima found in the energy searches and the results further support this prediction. Possible pathways for B-form to A-form DNA interconversion suggested by the results of this study are discussed. The results of these calculations support use of the new sugar modeling technique and torsion angle correlations in future conformational studies of nucleic acids.  相似文献   

3.
Crystals of 5-fluorouridine (5FUrd) have unit cell dimensions a = 7.716(1), b = 5.861(2), c = 13.041(1)A, alpha = gamma = 90 degrees, beta = 96.70 degrees (1), space group P2(1), Z = 2, rho obs = 1.56 gm/c.c and rho calc = 1574 gm/c.c The crystal structure was determined with diffractometric data and refined to a final reliability index of 0.042 for the observed 2205 reflections (I > or = 3sigma). The nucleoside has the anti conformation [chi = 53.1(4) degrees] with the furanose ring in the favorite C2'-endo conformation. The conformation across the sugar exocyclic bond is g+, with values of 49.1(4) and -69.3(4) degrees for phi(theta c) and phi (infinity) respectively. The pseudorotational amplitude tau(m) is 34.5 (2) with a phase angle of 171.6(4) degrees. The crystal structure is stabilized by a network of N-H...O and O-H...O involving the N3 of the uracil base and the sugar 03' and 02' as donors and the 02 and 04 of the uracil base and 03' oxygen as acceptors respectively. Fluorine is neither involved in the hydrogen bonding nor in the stacking interactions. Our studies of several 5-fluorinated nucleosides show the following preferred conformational features: 1) the most favored anti conformation for the nucleoside [chi varies from -20 to + 60 degrees] 2) an inverse correlation between the glycosyl bond distance and the chi angle 3) a wide variation of conformations of the sugar ranging froni C2'-endo through C3'-endo to C4'-exo 4) the preferred g+ across the exocyclic C4'-C5' bond and 5) no role for the fluorine atom in the hydrogen bonding or base stacking interactions.  相似文献   

4.
The x-ray crystal structures of two new anti-HIV compounds, 9-(2,3-dideoxy-2-fluoro-beta-D-threo-pentofuranosyl)adenine (2'-F-dd-araA) and 9-(2,3-dideoxy-2-fluoro-beta-D-threo- pentofuranosyl)hypoxanthine (2'-F-dd-aral), have been determined at two temperatures. Both crystals are in the space group P2(1)2(1)2(1), and their structures were solved by direct methods. Least-squares refinement produced final R-factors of 0.027 for the 2'-F-dd-araA structure and of 0.044 for the 2'-F-dd-aral structure, respectively. The latter structure contains a two-fold disordered conformation of the sugar moiety. All three conformers (one for 2'-F-dd-araA and two for 2'-F-dd-aral) adopt an anti chi CN glycosyl torsion angle. The sugar in the 2'-F-dd-araA structure has a C2'-endo pucker conformation, whereas the sugar in the 2'-F-dd-aral structure has a mixture of C2'-endo and C3'-endo pucker conformations. When the sugar adopts the C2'-endo conformation, the torsion angle about the C4'-C5' bond is in a transgauche+ conformation. In contrast, when the sugar adopts the C3'-endo conformation, the torsion angle about the C4'-C5' bond is in a gauche(+)-gauche- conformation. The C2'-F bond distance is 1.406(3) A, similar to that found in other aliphatic C-F bonds. The results suggest that the 2'-fluoro-2',3'-dideoxyarabinosyl nucleosides do not have a strong preference for either C2'-endo or C3'-endo sugar pucker.  相似文献   

5.
S N Rao 《Biophysical journal》1998,74(6):3131-3139
Conformational energy calculations have been presented on guanine nucleoside in which the furanose ring is replaced by 2',3'-dideoxy-2',3'-didehydrofuran using molecular mechanics and conformational analysis. Conformational energies have been evaluated using the MM2 and AMBER94 force field parameters at two different dielectric constants. The results are presented in terms of isoenergy contours in the conformational space of the glycosidic (chi) and C4'-C5' (gamma) bonds torsions. In general, the chi-gamma interrelationships differ from the corresponding plots for unmodified nucleosides and nucleotides, reported previously. Consistency of the calculated preferred conformations with the x-ray data is sensitive to the force field employed.  相似文献   

6.
3'-O-Anthraniloyladenosine, an analogue of the 3'- terminal aminoacyladenosine residue in aminoacyl-tRNAs, was prepared by chemical synthesis, and its crystal structure was determined. The sugar pucker of 3'-O-anthraniloyladenosine is 2'-endo resulting in a 3'-axial position of the anthraniloyl residue. The nucleoside is insynconformation, which is stabilized by alternating stacking of adenine and benzoyl residues of the neighboring molecules in the crystal lattice. The conformation of the 5'-hydroxymethylene in 3'-O- anthraniloyladenosine is gauche-gauche. There are two intramolecular and two intermolecular hydrogen bonds and several H-bridges with surrounding water molecules. The predominant structure of 3'-O-anthraniloyladenosine in solution, as determined by NMR spectroscopy, is 2'-endo,gauche-gauche and anti for the sugar ring pucker, the torsion angle around the C4'-C5'bond and the torsion angle around the C1'-N9 bond, respectively. The 2'-endo conformation of the ribose in 2'(3')-O-aminoacyladenosine, which places the adenine and aminoacyl residues in equatorial and axial positions, respectively, could serve as a structural element that is recognized by enzymes that interact with aminoacyl-tRNA or by ribosomes to differentiate between aminoacylated and non-aminoacylated tRNA.  相似文献   

7.
The influence of conformational rearrangement of the furanose ring in DNA on its dipole moment is studied. The dipole moment of the deoxyribose molecule as a function of its puckered state is calculated by the quantum-mechanical method using the MINDO/3 approximation. The values of the dipole moment and its components are obtained at various magnitudes of the pseudorotation phase angle. The C3'-endo in equilibrium C2'-endo conformational transition of deoxyribose is shown to be accompanied by the change in the dipole moment up to 3D. The results obtained are used to explain the structural properties of the DNA hydration shell.  相似文献   

8.
A general procedure is described to treat the pseudorotation of the furanose ring in terms of a three-state conformational equilibrium. In addition to the principal n (C3'-endo) and s (C2'-endo) puckering domains, the unusual e (01'-endo) intermediate is included in the analysis. Each of these three conformational categories is represented by a blend of five closely related puckered forms rather than by a single rotational isomeric state. Using this model together with experimentally measured nmr coupling constants, the puckering populations of various nucleic acid analogs are estimated. The conventional two-state n/s equilibria is confirmed in ordinary ribose and deoxyribose systems. The e domain, however, is found to be of major importance in several chemically modified furanoses including certain pyrimidine deoxynucleosides damaged by radiation and various nucleosides and nucleotides forced by bulky substituents on the base into unusual syn glycosyl arrangements. The "free" pseudorotation of these modified systems is not detected by conventional two-state puckering analyses.  相似文献   

9.
Conformational properties of branched RNA fragments in aqueous solution   总被引:1,自引:0,他引:1  
M J Damha  K K Ogilvie 《Biochemistry》1988,27(17):6403-6416
The conformational properties of branched trinucleoside diphosphates ACC, ACG, AGC, AGG, AUU, AGU, AUG, ATT, GUU, and aAUU [XYZ = X(2'p5'Y)3'p5'Z] have been studied in aqueous solution by nuclear magnetic resonance (1H, 13C), ultraviolet absorption, and circular dichroism. It is concluded from these studies that the purine ring of the central residue (X; e.g., adenosine) forms a base-base stack exclusively with the purine or pyrimidine ring of the 2'-nucleotidyl unit (Y; 2'-residue). The residue attached to the central nucleoside via the 3'-5'-linkage (Z; 3'-residue) is "free" from the influence of the other two heterocyclic rings. The ribose rings of the central nucleoside and the 2'- and 3'-residues exist as equilibrium mixtures of C2'-endo (2E)-C3'-endo (3E) conformers. The furanose ring of the central nucleoside (e.g., A) when linked to a pyrimidine nucleoside via the 2'-5'-linkage shows a higher preference for the 2E pucker conformation (e.g., AUG, AUU, ACG, ca. 80%) than those linked to a guanosine nucleoside through the same type of bond (AGU, AGG, AGC, ca. 70%). This indicates some correlation between nucleotide sequence and ribose conformational equilibrium. The 2E-3E equilibrium of 2'-pyrimidines (Y) shows significant, sometimes exclusive, preference (70-100%) for the 3E conformation; 3'-pyrimidines and 2'-guanosines have nearly equal 2E and 3E rotamer populations; and the ribose conformational equilibrium of 3'-guanosines shows a preference (60-65%) for the 2E pucker. Conformational properties were quantitatively evaluated for most of the bonds (C4'-C5', C5'-O5', C2'-O2', and C3'-O3') in the branched "trinucleotides" AUU and AGG by analysis of 1H-1H, 1H-31P, and 13C-31P coupling constants. The C4'-C5' bond of the adenosine units shows a significant preference for the gamma + conformation. The dominant conformation about C4'-C5' and C5'-O5' for the 2'-and 3'-nucleotidyl units is gamma + and beta t, respectively, with larger gamma + and beta t rotamer populations for the 2'-unit. The increased conformational purity in the 2'-residue, compared to the 3'-residue, is ascribed to the presence of an ordered (adenine----2'-residue) stacked state. The favored rotamers about C3'-O3' and C2'-O2' are epsilon- and epsilon'-, respectively. The conformational features of AUU and AGG were compared to those of their constitutive dimers A3'p5'G, A2'p5'G, A3'p5'U, and A2'p5'U and monomers 5'pG and 5'pU.  相似文献   

10.
11.
Abstract

Utilizing a new method for modeling furanose pseudorotation (D. A Pearlman and S.-H. Kim, J. Biomol. Struct. Dyn. 3, 85 (1985)) and the empirical multiple correlations between nucleic acid torsion angles we derived in the previous report (D. A Pearlman and S.-H. Kim, previous paper in this issue), we have made an energetic examination of the entire conformational spaces available to two nucleic acid oligonucleotides: d(ApApApA) and ApApApA The energies are calculated using a semi-empirical potential function. From the resulting body of data, energy contour map pairs (one for the DNA molecule, one for the RNA structure) have been created for each of the 21 possible torsion angle pairs in a nucleotide repeating unit. Of the 21 pairs, 15 have not been reported previously. The contour plots are different from those made earlier in that for each point in a particular angle-angle plot, the remaining five variable torsion angles are rotated to the values which give a minimum energy at this point. The contour maps are overall quite consistent with the experimental distribution of oligonucleotide data. A number of these maps are of particular interest: δ (C5′-C4′-C3′-03′)χ (04′-C1′-N9- C4), where the energetic basis for an approximately linear δ-χ correlation can be seen; ζ (C3′- 03′-P-05′)-δ, in which the experimentally observed linear correlation between ζ and δ in DNA (220° < ζ <280°) is clearly predicted; ζ-ε (C4′-C3′-03′-P), which shows that e increases with decreasing ζ <260°; α (03′-P-05′-C5′)-γ (05′-C5′-C4′-C3′) where a clear linear correlation between these angles is also apparent, consistent with experiment; and several others. For the DNA molecule studied here, the sugar torsion Ô is predicted to be the most flexible, while for the RNA molecule, the greatest amount of flexibility is expected to reside in a and y. Both the DNA and RNA molecules are predicted to be highly polymorphic. Complete energy minimization has been performed on each of the minima found in the energy searches and the results further support this prediction. Possible pathways for B-form to A-form DNA interconversion suggested by the results of this study are discussed. The results of these calculations support use of the new sugar modeling technique and torsion angle correlations in future conformational studies of nucleic acids.  相似文献   

12.
U Schmitz  G Zon  T L James 《Biochemistry》1990,29(9):2357-2368
Exchangeable and nonexchangeable proton and phosphorus resonances (11.75 T) of [d(GTATATAC)]2 in aqueous solution were assigned by using proton two-dimensional nuclear Overhauser effect (2D NOE) spectra, homonuclear proton double-quantum-filtered COSY (2QF-COSY) spectra, proton spin-lattice relaxation time measurements, and 31P1H heteronuclear shift correlation spectra. Due to the large line widths, it was not possible to directly extract vicinal proton coupling constant values from any spectrum including ECOSY or 2QF-COSY. However, comparison of quantitative 2QF-COSY spectral simulations with experimental spectra enabled elucidation of coupling constants. The scope and limitations of this approach were explored by computation and by use of experimental data. It was found that proton line widths exhibit some variability from one residue to the next as well as from one proton to the next within a residue and the exact line width is critical to accurate evaluation of coupling constants. Experimental 2QF-COSY spectra were not consistent with a rigid deoxyribose conformation for any of the nucleotide residues. A classical two-state model, with rapid jumps between C2'-endo (pseudorotation angle P = 162 degrees) and C3'-endo (P = 9 degrees) conformations, was able to account for the spectral characteristics of terminal residue sugars: 60% C2'-endo and 40% C3'-endo. However, the 2QF-COSY cross-peaks from the -TATATA- core could be simulated only if the classical two-state model was altered such that the dominant conformer had a pseudorotation angle at 144 degrees instead of 162 degrees. In this case, the major conformer amounted to 80-85%. Alternatively, the spectral data were consistent with a three-state model in which C2'-endo and C3'-endo conformations had the largest and smallest populations, respectively, but a third conformer corresponding to C1'-exo (P = 126 degrees) was present, consistent with recent molecular dynamics calculations. This alternative yielded populations of 50% (P = 162 degrees), 35% (P = 126 degrees), and 15% (P = 9 degrees) for the -TATATA- sugars. The spectral results indicate little variation of sugar pucker between T and A. Small differences in cross-peak component intensities and characteristic spectral distortions, however, do suggest some unquantified variation. 31P1H heteronuclear chemical shift correlation spectra manifested alternating chemical shifts and coupling constants suggestive of phosphodiester backbone conformational differences between TA and AT junctions.  相似文献   

13.
Several recent X-ray crystal structures of adenosine deaminase (ADA) in complex with various adenosine surrogates have illustrated the preferred mode of substrate binding for this enzyme. To define more specific structural details of substrate preferences for binding and catalysis, we have studied the ADA binding efficiencies and deamination kinetics of several synthetic adenosine analogues in which the furanosyl ring is biased toward a particular conformation. NMR solution studies and pseudorotational analyses were used to ascertain the preferred furanose ring puckers (P, nu(MAX)) and rotamer distributions (chi and gamma) of the nucleoside analogues. It was shown that derivatives which are biased toward a "Northern" (3'-endo, N) sugar ring pucker were deaminated up to 65-fold faster and bound more tightly to the enzyme than those that preferred a "Southern" (2'-endo, S) conformation. This behavior, however, could be modulated by other structural factors. Similarly, purine riboside inhibitors of ADA that prefer the N hemisphere were more potent inhibitors than S analogues. These binding propensities were corroborated by detailed molecular modeling studies. Docking of both N- and S-type analogues into the ADA crystal structure coordinates showed that N-type substrates formed a stable complex with ADA, whereas for S-type substrates, it was necessary for the sugar pucker to adjust to a 3'-endo (N-type) conformation to remain in the ADA substrate binding site. These data outline the intricate structural details for optimum binding in the catalytic cleft of ADA.  相似文献   

14.
Y S Latha  N Yathindra 《Biopolymers》1992,32(3):249-269
The preferred conformations of ribo and deoxyribo alpha-nucleosides and alpha-nucleotides, the stereoisomers of the naturally occurring beta-isomers, are worked out by minimizing the conformational energy as a function of all the major parameters including the sugar ring conformations along the pseudorotation path. The results of the studies bring out certain distinct conformational features that are at variance with their beta counterparts. The range of glycosyl conformations are found to be not only quite restricted here but favor predominantly the anti conformation. The syn glycosyl conformation for the entire region of P values are found to be energetically less favorable, with the barrier to anti in equilibrium with syn interconversion being higher especially in alpha-ribonucleosides. The energetically preferred range of pseudorotation phase angles (P) is also considerably restricted and P values corresponding to the C1'-exo range of sugars are highly unfavorable for alpha-nucleosides, in sharp contrast to the broad range of sugar ring conformations favored by beta-isomers. While both trans congruent to 180 degrees and skew congruent to 270 degrees conformations around the C3'-O3' (phi') bond are favored for alpha-3'-nucleotides with deoxyribose sugars, ribose sugars seem to favor only the skew values of phi'. Most interestingly and in sharp contrast to beta-stereoisomers, an energy barrier is encountered at P values corresponding to O4'-endo sugars. This suggests that the possible sugar pucker interconversion between C2'-endo/C3'-exo and C3'-endo/C2'-exo in alpha-anomers could take place only through the O4'-exo region. Likewise the possible path of anti in equilibrium with syn interconversion in alpha-nucleosides is not via high anti, in sharp contrast to beta-nucleosides. These observations should be borne in mind while assigning the sugar ring conformers in alpha-nucleosides and those containing them from nmr investigations. Comparison of the results with beta-anomers seem to suggest on the whole a lack of conformational variability or the restricted nature of alpha-stereoisomers. This could be one of the reasons for its nonselection in the naturally occurring nucleic acids.  相似文献   

15.
The greatest difficulty in modeling a nucleic acid is generating the coordinates of its furanoses. This difficulty arises from constraints imposed by the closed ring geometries of these sugars. We have developed a new method for modeling these furanose rings. Using this method, the coordinates of a sugar can be obtained quickly and unambiguously for any point on the pseudorotational pathway from one parameter: the phase angle of pseudorotation P. The significant difference between this and previous sugar modeling schemes is that here the endocyclic bond lengths of the five-membered sugar ring are allowed to vary a small amount according to simple, explicit, and experimentally reasonable analytic functions of P. The coefficients of these functions follow from the empirical behavior of the endocyclic bond angles and from geometrical constraints due to ring closure. The ability to model the sugars directly from one parameter greatly facilitates carrying out the global conformational studies on nucleic acid constituents which will be attempted in subsequent papers of this series.  相似文献   

16.
Structural properties of biomolecules are dictated by their intrinsic conformational energetics in combination with environmental contributions. Calculations using high-level ab initio methods on the deoxyribonucleosides have been performed to investigate the influence of base on the intrinsic conformational energetics of nucleosides. Energy minima in the north and south ranges of the deoxyribose pseudorotation surfaces have been located, allowing characterization of the influence of base on the structures and energy differences between those minima. With all bases, chi values associated with the south energy minimum are lower than in canonical B-DNA, while chi values associated with the north energy minimum are close to those in canonical A-DNA. In deoxycytidine, chi adopts an A-DNA conformation in both the north and south energy minima. Energy differences between the A and B conformations of the nucleosides are <0.5 kcal/mol in the present calculations, except with deoxycytidine, where the A form is favored by 2.3 kcal/mol, leading the intrinsic conformational energetics of GC basepairs to favor the A form of DNA by 1.5 kcal/mol as compared with AT pairs. This indicates that the intrinsic conformational properties of cytosine at the nucleoside level contribute to the A form of DNA containing predominately GC-rich sequences. In the context of a B versus Z DNA equilibrium, deoxycytidine favors the Z form over the B form by 1.6 kcal/mol as compared with deoxythymidine, suggesting that the intrinsic conformational properties of cytosine also contribute to GC-rich sequences occurring in Z DNA with a higher frequency than AT-rich sequences. Results show that the east pseudorotation energy barrier involves a decrease in the furanose amplitude and is systematically lower than the inversion barrier, with the energy differences influenced by the base. Energy barriers going from the south (B form) sugar pucker to the east pseudorotation barrier are lower in pyrimidines as compared with purines, indicating that the intrinsic conformational properties associated with base may also influence the sugar pseudorotational population distribution seen in DNA crystal structures and the kinetics of B to A transitions. The present work provides evidence that base composition, in addition to base sequence, can influence DNA conformation.  相似文献   

17.
Interconversion between energetically favored molecular conformations must proceed through less favored intermediate states. Thus, a knowledge of the nucleotide furanose ring conformations, other than the crystallographically well-determined ones, are of interest in investigating nucleotide conformational energies and dynamics. The sugar ring flexibility affects the conformation and dynamics of the monomer and determines the range of feasible nucleic acid secondary and tertiary structures. We have generated furanose geometries for varying amplitudes of pucker over its entire range of pseudorotation by making use of a ring closure procedure and the empirical dependence of endocyclic bond lengths and bond angles on sugar pucker. Atomic coordinates are tabulated here for the furanose ring at pseudorotation phase angle intervals of 9 degrees for the average amplitude (tau m) of pucker of 39 degrees as well as for decreased (20 degrees and 30 degrees) and increased (44 degrees) values of tau m. However, the coordinates for any values of P and tau m can be readily calculated.  相似文献   

18.
A normal coordinate analysis has been carried out on guanosine and cytidine residues appearing in oligo and polynucleotides by using a simplified valence force field that allows the vibrational spectra of 5'-dGMP and 2'-deoxycytidine molecules to be reproduced. The role of both C2'-endo and C3'-endo conformations on sugar pucker, as well as that of glycosidic torsion angle (X), on several characteristic vibration modes of these residues have been studied. The present calculations based on a non-redundant set of internal coordinates preserving the harmonic approximation of the potential field, allows us to explain quite satisfactorily the modifications of the vibrational spectra in the 1550-1250 cm-1 and 785-500 cm-1 regions, when the right----left-handed conformational transition occurs.  相似文献   

19.
Abstract

The greatest difficulty in modeling a nucleic acid is generating the coordinates of its furanoses. This difficulty arises from constraints imposed by the closed ring geometries of these sugars. We have developed a new method for modeling these furanose rings. Using this method, the coordinates of a sugar can be obtained quickly and unambiguously for any point on the pseudorotational pathway from one parameter: the phase angle of pseudorotation P. The significant difference between this and previous sugar modeling schemes is that here the endocyclic bond lengths of the five-membered sugar ring are allowed to vary a small amount according to simple, explicit, and experimentally reasonable analytic functions of P. The coefficients of these functions follow from the empirical behavior of the endocyclic bond angles and from geometrical constraints due to ring closure. The ability to model the sugars directly from one parameter greatly facilitates carrying out the global conformational studies on nucleic acid constituents which will be attempted in subsequent papers of this series.  相似文献   

20.
Abstract

Interconversion between energetically favored molecular conformations must proceed through less favored intermediate states. Thus, a knowledge of the nucleotide furanose ring conformations, other than the crystallographically well-determined ones, are of interest in investigating nucleotide conformational energies and dynamics. The sugar ring flexibility affects the conformation and dynamics of the monomer and determines the range of feasible nucleic acid secondary and tertiary structures. We have generated furanose geometries for varying amplitudes of pucker over its entire range of pseudorotation by making use of a ring closure procedure and the empirical dependence of endocyclic bond lengths and bond angles on sugar pucker. Atomic coordinates are tabulated here for the furanose ring at pseudorotation phase angle intervals of 9° for the average amplitude (τm) of pucker of 39° as well as for decreased (20° and 30°) and increased (44°) values of τm. However, the coordinates for any values of P and τm can be readily calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号