首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human pathogen Neisseria meningitidis is capable of growth using the denitrification of nitrite to nitrous oxide under microaerobic conditions. This process is catalyzed by two reductases: nitrite reductase (encoded by aniA) and nitric oxide (NO) reductase (encoded by norB). Here, we show that in N. meningitidis MC58 norB is regulated by nitric oxide via the product of gene NMB0437 which encodes NsrR. NsrR is a repressor in the absence of NO, but norB expression is derepressed by NO in an NsrR-dependent manner. nsrR-deficient mutants grow by denitrification more rapidly than wild-type N. meningitidis, and this is coincident with the upregulation of both NO reductase and nitrite reductase even under aerobic conditions in the absence of nitrite or NO. The NsrR-dependent repression of aniA (unlike that of norB) is not lifted in the presence of NO. The role of NsrR in the control of expression of aniA is linked to the function of the anaerobic activator protein FNR: analysis of nsrR and fnr single and nsrR fnr double mutants carrying an aniA promoter lacZ fusion indicates that the role of NsrR is to prevent FNR-dependent aniA expression under aerobic conditions, indicating that FNR in N. meningitidis retains considerable activity aerobically.  相似文献   

3.
We have analyzed the extent of regulation by the nitric oxide (NO)-sensitive repressor NsrR from Neisseria meningitidis MC58, using microarray analysis. Target genes that appeared to be regulated by NsrR, based on a comparison between an nsrR mutant and a wild-type strain, were further investigated by quantitative real-time PCR, revealing a very compact set of genes, as follows: norB (encoding NO reductase), dnrN (encoding a protein putatively involved in the repair of nitrosative damage to iron-sulfur clusters), aniA (encoding nitrite reductase), nirV (a putative nitrite reductase assembly protein), and mobA (a gene associated with molybdenum metabolism in other species but with a frame shift in N. meningitidis). In all cases, NsrR acts as a repressor. The NO protection systems norB and dnrN are regulated by NO in an NsrR-dependent manner, whereas the NO protection system cytochrome c' (encoded by cycP) is not controlled by NO or NsrR, indicating that N. meningitidis expresses both constitutive and inducible NO protection systems. In addition, we present evidence to show that the anaerobic response regulator FNR is also sensitive to NO but less so than NsrR, resulting in complex regulation of promoters such as aniA, which is controlled by both FNR and NsrR: aniA was found to be maximally induced by intermediate NO concentrations, consistent with a regulatory system that allows expression during denitrification (in which NO accumulates) but is down-regulated as NO approaches toxic concentrations.  相似文献   

4.
5.
6.
Neisseria meningitidis, the causative agent of meningococcal disease in humans, is likely to be exposed to nitrosative stress during natural colonization and disease. The genome of N. meningitidis includes the genes aniA and norB, predicted to encode nitrite reductase and nitric oxide (NO) reductase, respectively. These gene products should allow the bacterium to denitrify nitrite to nitrous oxide. We show that N. meningitidis can support growth microaerobically by the denitrification of nitrite via NO and that norB is required for anaerobic growth with nitrite. NorB and, to a lesser extent, the cycP gene product cytochrome c' are able to counteract toxicity due to exogenously added NO. Expression of these genes by N. meningitidis during colonization and disease may confer protection against exogenous or endogenous nitrosative stress.  相似文献   

7.
8.
9.
10.
11.
In this paper, we report the identification of a norCBQD gene cluster that encodes a functional nitric oxide reductase (Nor) in Nitrosomonas europaea. Disruption of the norB gene resulted in a strongly diminished nitric oxide (NO) consumption by cells and membrane protein fractions, which was restored by the introduction of an intact norCBQD gene cluster in trans. NorB-deficient cells produced amounts of nitrous oxide (N2O) equal to that of wild-type cells. NorCB-dependent activity was present during aerobic growth and was not affected by the inactivation of the putative fnr gene. The findings demonstrate the presence of an alternative site of N2O production in N. europaea.  相似文献   

12.
13.
14.
15.
Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.  相似文献   

16.
We investigated the conservation and antibody accessibility of inner core epitopes of Moraxella catarrhalis lipopolysaccharide (LPS) in order to assess their potential as vaccine candidates. Two LPS mutants, a single mutant designated lgt2 and a double mutant termed lgt2/lgt4, elaborating truncated inner core structures were generated in order to preclude expression of host-like outer core structures and to create an inner core structure that was shared by all three serotypes A, B and C of M. catarrhalis. Murine monoclonal antibodies (mAbs), designated MC2-1 and MC2-10 were obtained by immunising mice with the lgt2 mutant of M. catarrhalis serotype A strain. We showed that mAb MC2-1 can bind to the core LPS of wild-type (wt) serotype A, B and C organisms and concluded that mAb MC2-1 defines an immunogenic inner core epitope of M. catarrhalis LPS. We were unsuccessful in obtaining mAbs to the lgt2/lgt4 mutant. MAb MC2-10 only recognised the lgt2 mutant and the wt serotype A strain, and exhibited a strong requirement for the terminal N-acetyl-glucosamine residue of the lgt2 mutant core oligosaccharide, suggesting that this residue was immunodominant. Subsequently, we showed that both mAbs MC2-1 and MC2-10 could facilitate bactericidal killing of the lgt2 mutant, however neither mAb could facilitate bactericidal killing of the wt serotype A strain. We then confirmed and extended the candidacy of the inner core LPS by demonstrating that it is possible to elicit functional antibodies against M. catarrhalis wt strains following immunisation of rabbits with glycoconjugates elaborating the conserved inner core LPS antigen. The present study describes three conjugation strategies that either uses amidases produced by Dictyostelium discoideum, targeting the amino functionality created by the amidase activity as the attachment point on the LPS molecule, or a strong base treatment to remove all fatty acids from the LPS, thus creating amino functionalities in the lipid A region to conjugate via maleimide-thiol linker strategies targeting the carboxyl residues of the carrier protein and the free amino functionalities of the derived lipid A region of the carbohydrate resulted in a high loading of carbohydrates per carrier protein from these carbohydrate preparations. Immunisation derived antisera from rabbits recognised fully extended M. catarrhalis LPS and whole cells. Moreover, bactericidal activity was demonstrated to both the immunising carbohydrate antigen and importantly to wt cells, thus further supporting the consideration of inner core LPS as a potential vaccine antigen to combat disease caused by M. catarrhalis.  相似文献   

17.
Macrophages produce nitric oxide (NO) via the inducible nitric oxide synthase as part of a successful response to infection. The gene norB of Neisseria meningitidis encodes a NO reductase which enables utilization and consumption of NO during microaerobic respiration and confers resistance to nitrosative stress-related killing by human monocyte-derived macrophages (MDM). In this study we confirmed that NO regulates cytokine and chemokine release by resting MDM: accumulation of TNF-alpha, IL-12, IL-10, CCL5 (RANTES) and CXCL8 (IL-8) in MDM supernatants was significantly modified by the NO-donor S-nitroso-N-penicillamine (SNAP). Using a protein array, infection of MDM with N. meningitidis was shown to be associated with secretion of a wide range of cytokines and chemokines. To test whether NO metabolism by N. meningitidis modifies release of NO-regulated cytokines, we infected MDM with wild-type organisms and an isogenic norB strain. Resulting expression of the cytokines TNF-alpha and IL-12, and the chemokine CXCL8 was increased and production of the cytokine IL-10 and the chemokine CCL5 was decreased in norB-infected MDM, in comparison to wild-type. Addition of SNAP to cultures infected with wild-type mimicked the effect observed in cultures infected with the norB mutant. In conclusion, NorB-catalysed removal of NO modifies cellular release of NO-regulated cytokines and chemokines.  相似文献   

18.
By mutational analysis it was found that a 3.9-kb SmaI-XhoII DNA fragment of Xanthomonas campestris pv. campestris is involved in lipopolysaccharide (LPS) biosynthesis. LPS samples isolated from different mutants carrying mutations in the 3.9-kb SmaI-XhoII DNA fragment exhibited banding patterns in silver-stained sodium dodecyl sulfate-polyacrylamide gels markedly different from that of the wild-type LPS. Moreover, comparison of the monosaccharide composition obtained by high-performance anion-exchange chromatography with pulsed amperometric detection of LPS purified from wild-type Xanthomonas campestris pv. campestris B100 and from mutants with mutations in the 3.9-kb SmaI-XhoII DNA fragment revealed a lack of rhamnose moieties in the mutant LPS. Sequence analysis of this DNA fragment revealed four open reading frames (ORFs), designated ORF302, ORF183, ORF295, and ORF351. The deduced amino acid sequences of these ORFs showed a high degree of homology to the deduced amino acid sequences of the rfbC, rfbD, rfbA, and rfbB genes of Salmonella typhimurium LT2, which have been shown to encode a set of enzymes responsible for conversion of glucose 1-phosphate to dTDP-rhamnose.  相似文献   

19.
20.
The genes for a nitric oxide reductase-like cytochrome bc complex were cloned from a thermophilic, chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. The structural genes norC and norB, which encode cytochrome c and cytochrome b subunits of the complex respectively, are probably transcribed as a tricistronic operon with a following gene encoding a putative membrane protein. NorC has, unusually, two hydrophobic transmembrane spans in its N-terminus. Immunoblot analysis showed that expression of NorC was induced by nitrate, nitrite, or sodium nitropurusside, suggesting that the norCB gene product is a denitrification enzyme, nitric oxide reductase. The consensus sequences for the DNR/NnrR-type or the NorR/FhpR-type nitric oxide-sensing regulators of proteobacteria were not found in the norC promoter region, but consensus -35 and -10 sequences were found in this region. These results indicate that strain TK-6 has a nitrogen oxide-sensing regulatory system that differs from proteobacterial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号