首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we explore the potential use of the Pseudomonas putida KT2440 strain for bioremediation of naphthalene-polluted soils. Pseudomonas putida strain KT2440 thrives in naphthalene-saturated medium, establishing a complex response that activates genes coding for extrusion pumps and cellular damage repair enzymes, as well as genes involved in the oxidative stress response. The transfer of the NAH7 plasmid enables naphthalene degradation by P. putida KT2440 while alleviating the cellular stress brought about by this toxic compound, without affecting key functions necessary for survival and colonization of the rhizosphere. Pseudomonas putida KT2440(NAH7) efficiently expresses the Nah catabolic pathway in vitro and in situ, leading to the complete mineralization of [(14)C]naphthalene, measured as the evolution of (14)CO(2), while the rate of mineralization was at least 2-fold higher in the rhizosphere than in bulk soil.  相似文献   

2.
3.
4.
5.
The genome sequences of several pseudomonads have revealed a gene cluster containing genes for a two-component heavy metal histidine sensor kinase and response regulator upstream of cinA and cinQ, which we show herein to encode a copper-containing azurin-like protein and a pre-Q(0) reductase, respectively. In the presence of copper, Pseudomonas putida KT2440 produces the CinA and CinQ proteins from a bicistronic mRNA. UV-visible spectra of CinA show features at 439, 581, and 719 nm, which is typical of the plastocyanin family of proteins. The redox potential of the protein was shown to be 456 +/- 4 mV by voltametric titrations. Surprisingly, CinQ is a pyridine nucleotide-dependent nitrile oxidoreductase that catalyzes the conversion of pre-Q(0) to pre-Q(1) in the nucleoside queuosine biosynthetic pathway. Gene disruptions of cinA and cinQ did not lead to a significant increase in the copper sensitivity of P. putida KT2440 under the conditions tested. Possible roles of CinA and CinQ to help pseudomonads adapt and survive under prolonged copper stress are discussed.  相似文献   

6.
We report a study of the role of putative exopolysaccharide gene clusters in the formation and stability of Pseudomonas putida KT2440 biofilm. Two novel putative exopolysaccharide gene clusters, pea and peb, were identified, and evidence is provided that they encode products that stabilize P. putida KT2440 biofilm. The gene clusters alg and bcs, which code for proteins mediating alginate and cellulose biosynthesis, were found to play minor roles in P. putida KT2440 biofilm formation and stability under the conditions tested. A P. putida KT2440 derivative devoid of any identifiable exopolysaccharide genes was found to form biofilm with a structure similar to wild-type biofilm, but with a stability lower than that of wild-type biofilm. Based on our data, we suggest that the formation of structured P. putida KT2440 biofilm can occur in the absence of exopolysaccharides; however, exopolysaccharides play a role as structural stabilizers.  相似文献   

7.
三唑磷水解酶基因为研究发现的一个新的广谱有机磷水解酶基因,通过PCR从有机磷降解菌株Ochrobactrumsp.mp-4总DNA扩增了tpd,将tpd定向克隆到pBBRMCS-5载体上,构建重组质粒pTPD,在辅助质粒pRK2013的帮助下,通过三亲接合将pTPD转移到模式菌株Pseudomonas putidaKT2440中,获得的工程菌PseudomonasputidaKT2440-DOP可以降解多种有机磷农药及芳香烃化合物;KT2440-DOP的有机磷水解酶活较出发菌株MP-4提高了一倍左右,且遗传性状稳定。  相似文献   

8.
9.
The stability of seven genomic islands of Pseudomonas putida KT2440 with predicted potential for mobilization was studied in bacterial populations associated with the rhizosphere of corn plants by multiplex PCR. DNA rearrangements were detected for only one of them (GI28), which was lost at high frequency. This genomic island of 39.4 kb, with 53 open reading frames, shows the characteristic organization of genes belonging to tailed phages. We present evidence indicating that it corresponds to the lysogenic state of a functional bacteriophage that we have designated Pspu28. Integrated and rarely excised forms of Pspu28 coexist in KT2440 populations. Pspu28 is self-transmissible, and an excisionase is essential for its removal from the bacterial chromosome. The excised Pspu28 forms a circular element that can integrate into the chromosome at a specific location, att sites containing a 17-bp direct repeat sequence. Excision/insertion of Pspu28 alters the promoter sequence and changes the expression level of PP_1531, which encodes a predicted arsenate reductase. Finally, we show that the presence of Pspu28 in the lysogenic state has a negative effect on bacterial fitness in the rhizosphere under conditions of intraspecific competition, thus explaining why clones having lost this mobile element are recovered from that environment.  相似文献   

10.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

11.
One rhamnolipid-producing bacterial strain named Pseudomonas aeruginosa BSFD5 was isolated and characterized. Its rhlABRI cassette including necessary genes for rhamnolipid synthesis was cloned and transformed into the chromosome of P. putida KT2440 by a new random transposon vector without introducing antibiotic-resistance marker, generating a genetically engineered microorganism named P. putida KT2440-rhlABRI, which could stably express the rhlABRI cassette and produce rhamnolipid at a yield of 1.68?g?l(-1). In experiments using natural soil, it was shown that P. putida KT2440-rhlABRI could increase the dissolution of pyrene and thus promote its degradation by indigenous microorganisms. P. putida KT2440-rhlABRI thus demonstrated potential for enhancing the remediation of soils contaminated with polycyclic aromatic hydrocarbons.  相似文献   

12.
Pseudomonas putida KT2440 is becoming a new robust metabolic chassis for biotechnological applications, due to its metabolic versatility, low nutritional requirements and biosafety status. We have previously engineered P. putida KT2440 to be an efficient propionate producer from L-threonine, although the internal enzymes converting propionyl-CoA to propionate are not clear. In this study, we thoroughly investigated 13 genes annotated as potential thioesterases in the KT2440 mutant. One thioesterase encoded by locus tag PP_4975 was verified to be the major contributor to propionate production in vivo. Deletion of PP_4975 significantly decreased propionate production, whereas the performance was fully restored by gene complement. Compared with thioesterase HiYciA from Haemophilus influenza, thioesterase PP_4975 showed a faster substrate conversion rate in vitro. Thus, this study expands our knowledge on acyl-CoA thioesterases in P. putida KT2440 and may also reveal a new target for further engineering the strain to improve propionate production performance.  相似文献   

13.
A surface anchor system derived from the ice-nucleation protein (INP) from Pseudomonas syringe was used to localize organophosphorus hydrolase (OPH) onto the surface of Pseudomonas putida KT2440. Cells harboring the shuttle vector pPNCO33 coding for the INP-OPH fusion were capable of targeting OPH onto the cell surface as demonstrated by whole cell ELISA. The whole cell activity of P. putida KT2440 was shown to be 10 times higher than those of previous efforts expressing the same fusion protein in Escherichia coli. The capability of expressing enzymes on the surface of a robust and environmentally benign P. putida KT2440 should open up new avenues for a wide range of applications such as in situ bioremediation.  相似文献   

14.
15.
16.
Abstract Streptococcal promoters were shown to fulfil primary structure requirements for the expression of heterologous genes in Pseudomonas putida KT2440. The identity of the gene products, streptokinase and human interferon-α1, as synthesized by KT2440, was confirmed by their biological, antigenic and/or physical properties. Although designed as secretion vectors with streptococcal signal sequences, the recombinant plasmids failed to mediate the complete export of either protein into the periplasmic space of KT2440.  相似文献   

17.
To identify genes essential to biofilm formation in Pseudomonas putida KT2440, 12 mutants defective in oxidative stress-related or metabolic pathway-related genes were evaluated. Of them, only the dsbA mutant lacking the disulfide bond isomerase exhibited significantly increased attachment to the polystyrene surface. Visual evaluation by extracellular matrix staining and scanning electron microscopy indicated that the KT2440-Δ dsbA strain displays enhanced extracellular matrix production, rugose colony morphology on agar plates and floating pellicles in static culture. Accordingly, we propose that deletion of the dsbA gene may stimulate production of the extracellular matrix, resulting in those phenotypes. In addition, the lack of detectable fluorescence in the KT2440-Δ dsbA under UV light as well as in both the wild type and the KT2440-Δ dsbA when grown on Luria–Bertani plates containing ferrous iron suggests that the fluorescent molecule may be a fluorescent siderophore with its synthesis/secretion controlled by DsbA in KT2440. These phenotypic defects observed in the dsbA mutant were complemented by the full-length KT2440 and Escherichia coli dsbA genes. In contrast to the role of DsbA in other bacteria, our results provide the first evidence that disruption of P. putida KT2440 dsbA gene overproduces the extracellular matrix and thus promotes biofilm formation.  相似文献   

18.
In this work we have characterized the galA gene product from Pseudomonas putida KT2440, a ring-cleavage dioxygenase that acts specifically on gallate to produce 4-oxalomesaconate. The protein is a trimer composed by three identical subunits of 47.6 kDa (419 amino acids) that uses Fe2+ as the main cofactor. The gallate dioxygenase showed maximum activity at pH 7.0, and the Km and Vmax values for gallate were 144 microM and 53.2 micromol/min/mg of protein, respectively. A phylogenetic study suggests that the gallate dioxygenase from P. putida KT2440 is the prototype of a new subgroup of type II extradiol dioxygenases that share a common ancestor with protocatechuate 4,5-dioxygenases and whose two-domain architecture might have evolved from the fusion of the large and small subunits of the latter. A three-dimensional model for the N-terminal domain (residues 1-281) and C-terminal domain (residues 294-420) of the gallate dioxygenase from P. putida KT2440 was generated by comparison with the crystal structures of the large (LigB) and small (LigA) subunits of the protocatechuate 4,5-dioxygenase from Sphingomonas paucimobilis SYK-6. The expression of the galA gene was specifically induced when P. putida KT2440 cells grew in the presence of gallate. A P. putida KT2440 galA mutant strain was unable to use gallate as the sole carbon source and it did not show gallate dioxygenase activity, suggesting that the GalA protein is the only dioxygenase involved in gallate cleavage in this bacterium. This work points to the existence of a new pathway that is devoted to the catabolism of gallic acid and that remained unknown in the paradigmatic P. putida KT2440 strain.  相似文献   

19.
The open reading frame pp0053, which has a high homology with the sequence of mitochondrial sulfide dehydrogenase (HMT2) conferring cadmium tolerance in fission yeast, was amplified from Pseudomonas putida KT2440 and expressed in Escherichia coli JM109(DE3). The isolated and purified PP0053-His showed absorption spectra typical of a flavin adenine dinucleotide (FAD)--binding protein. The PP0053-His catalyzed a transfer of sulfide-sulfur to the thiophilic acceptor, cyanide, which decreased the Km value of the enzyme for sulfide oxidation and elevated the sulfide-dependent quinone reduction. Reaction of the enzyme with cyanide elicited a dose-dependent formation of a charge transfer band, and the FAD-cyanide adduct was supposed to work for a sulfur transfer. The pp0053 deletion from P. putida KT2440 led to activity declines of the intracellular catalase and ubiquinone-H2 oxidase. The sulfide-quinone oxidoreductase activity in P. putida KT2440 was attributable to the presence of pp0053, and the activity showed a close relevance to enzymatic activities related to sulfur assimilation.  相似文献   

20.
The fpr gene, which encodes a ferredoxin-NADP+ reductase, is known to participate in the reversible redox reactions between NADP+/NADPH and electron carriers, such as ferredoxin or flavodoxin. The role of Fpr and its regulatory protein, FinR, in Pseudomonas putida KT2440 on the oxidative and osmotic stress responses has already been characterized [Lee at al. (2006). Biochem. Biophys. Res. Commun. 339, 1246-1254]. In the genome of P. putida KT2440, another Fpr homolog (FprB) has a 35.3% amino acid identity with Fpr. The fprB gene was cloned and expressed in Escherichia coli. The diaphorase activity assay was conducted using purified FprB to identify the function of FprB. In contrast to the fpr gene, the induction of fprB was not affected by oxidative stress agents, such as paraquat, menadione, H2O2 and t-butyl hydroperoxide. However, a higher level of fprB induction was observed under osmotic stress. Targeted disruption of fprB by homologous recombination resulted in a growth defect under high osmotic conditions. Recovery of oxidatively damaged aconitase activity was faster for the fprB mutant than for the fpr mutant, yet still slower than that for the wild type. Therefore, these data suggest that the catalytic function of FprB may have evolved to augment the function of Fpr in P. putida KT2440.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号