首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some animals express a form of eusociality known as “fortress defense,” in which defense rather than brood care is the primary social act. Aphids are small plant‐feeding insects, but like termites, some species express division of labor and castes of aggressive juvenile “soldiers.” What is the functional basis of fortress defense eusociality in aphids? Previous work showed that the acquisition of venoms might be a key innovation in aphid social evolution. We show that the lethality of aphid soldiers derives in part from the induction of exaggerated immune responses in insects they attack. Comparisons between closely related social and nonsocial species identified a number of secreted effector molecules that are candidates for immune modulation, including a convergently recruited protease described in unrelated aphid species with venom‐like functions. These results suggest that aphids are capable of antagonizing conserved features of the insect immune response, and provide new insights into the mechanisms underlying the evolution of fortress defense eusociality in aphids.  相似文献   

2.
3.
Aphids belonging to the three genera Tuberaphis, Glyphinaphis, and Cerataphis contain extracellular fungal symbionts that resemble endocellular yeast-like symbionts of planthoppers. Whereas the symbiont of planthoppers has a uricase (urate oxidase; EC 1.7.3.3) and recycles uric acid that the host stores, no uric acid was found in Tuberaphis styraci, and its fungal symbiont did not exhibit the uricase activity. However, the fungal symbionts of these aphids, including that of T. styraci, were shown to have putative uricase genes, or pseudogenes, for the uricase. Sequence analysis of these genes revealed that deleterious mutations occurred independently on each lineage of Glyphinaphis and Tuberaphis, while no such mutation was found in the lineage of Cerataphis. These genes were almost identical to those cloned from the symbionts of planthoppers, though the host aphids and planthoppers are phylogenetically distant. To estimate the phylogenetic relationship in detail between the fungal symbionts of aphids and those of planthoppers, a gene tree was constructed based on the sequences of the uricase genes including their flanking regions. As a result, the symbionts of planthoppers and Tuberaphis aphids formed a sister group against those of Glyphinaphis and Cerataphis aphids with high bootstrap confidence levels, which strongly suggests that symbionts have been horizontally transferred from the aphids' lineage to the planthoppers'. Received: 29 March 2000 / Accepted: 31 May 2000  相似文献   

4.
Aphid taxonomy is often frustrated by the host alternation and extensive polyphenism displayed by many species. Here we examine the utility of using molecular data to assist in life cycle and taxonomic determination. We found that a relatively small amount of DNA sequence data can greatly assist in these tasks. Molecular data have identified the synonymy of five species: Tuberaphis plicator (Noordam) is a junior synonym of T.takenouchii (Takahashi), T.taiwana (Takahashi) is a junior synonym of T.coreana Takahashi, Hamiltonaphis styraci (Matsumura) is transferred to Tuberaphis Takahashi, Astegopteryx roepkei Hille Ris Lambers is transferred to Ceratoglyphina van der Goot, and A.vandermeermohri Hille Ris Lambers is transferred to Cerataphis Lichtenstein. We have elucidated the complete life cycles of five species: A.basalis (van der Goot) alternates between Styrax benzoin and bamboos, Ceratoglyphina bambusae van der Goot alternates between S.benzoin and bamboos, Pseudoregma sundanica (van der Goot) alternates between S.paralleloneura and Zingiberaceae, T.coreana alternates between S.formosana and Loranthaceae, and T.takenouchii alternates between S.japonica and Loranthaceae. In all cases the molecular data agreed with available morphological data. This analysis demonstrates the utility of DNA sequence comparisons for elucidating complex life cycles and the taxonomy of difficult insect groups.  相似文献   

5.
6.
The pea aphid genome was recently found to harbor genes for carotenoid biosynthesis, reflecting an ancestral transfer from a fungus. To explore the evolution of the carotene desaturase gene family within aphids, sequences were retrieved from a set of 34 aphid species representing numerous deeply diverging lineages of aphids and analyzed together with fungal sequences retrieved from databases. All aphids have at least one copy of this gene and some aphid species have up to seven, whereas fungal genomes consistently have a single copy. The closest relatives of aphids, adelgids, also have carotene desaturase; these sequences are most closely related to those from aphids, supporting a shared origin from a fungal to insect transfer predating the divergence of adelgids and aphids. Likewise, all aphids, and adelgids, have carotenoid profiles that are consistent with their biosynthesis using the acquired genes of fungal origin rather than derivation from food plants. The carotene desaturase was acquired from a fungal species outside of Ascomycota or Basidiomycota and closest to Mucoromycotina among sequences available in databases. In aphids, an ongoing pattern of gene duplication is indicated by the presence of both anciently and recently diverged paralogs within genomes and by the presence of a high frequency of pseudogenes that appear to be recently inactivated. Recombination among paralogs is evident, making analyses of patterns of selection difficult, but tests of selection for a nonrecombining region indicates that duplications tend to be followed by bouts of positive selection. Species of Macrosiphini, which often show color polymorphisms, typically have a larger number of desaturase copies relative to other species sampled in the study. These results indicate that aphid evolution has been accompanied by ongoing evolution of carotenogenic genes, which have undergone duplication, recombination, and occasional positive selection to yield a wide variety of carotenoid profiles in different aphid species.  相似文献   

7.
Molecular regulation of human cathepsin B: implication in pathologies   总被引:4,自引:0,他引:4  
  相似文献   

8.
9.
竹类植物叶片上八种蚜虫的形态变异分析   总被引:1,自引:0,他引:1  
方燕  乔格侠  张广学 《昆虫学报》2006,49(6):991-1001
选取寄生于竹类植物叶片上的3科6属共8种蚜虫,即居竹舞蚜Astegopteryx bambusifoliae Takahashi、小舞蚜Astegopteryx minuta (van der Goot)、居竹坚蚜Cerataphis bambusifoliae Takahashi、林栖粉角蚜Ceratovacuna silvestrii (Takahashi)、塔毛角蚜Chaitoregma tattakana (Takahashi)、竹色蚜Melanaphis bambusae (Fullaway)、竹纵斑蚜Takecallis arundinariae (Essig)和竹梢凸唇斑蚜 Takecallis taiwanus (Takahashi),在光学显微镜下观察并测量了34个形态特征;统计比较了28个形态特征在种内的变异。通过主成分分析筛选形态特征,每两两特征对应统计作图,标出每种蚜虫的95%椭圆置信区间进行分析。结果表明,体形、腹管和触角的形态在不同的科间有较大差别,喙末端、跗节Ⅰ、跗节Ⅱ及爪的形态在科间有较高的趋同性;在种内各形态特征存在一定变异,其中喙末端 (CV=3.73%~7.59%)、跗节Ⅰ (CV=4.16%~12.05%)、跗节Ⅱ (CV=3.10%~8.39%)和爪(CV=2.60%~11.68%)的变异都很小。主成分分析筛选的第一主成分为喙末端、跗节Ⅰ、跗节Ⅱ和爪,不同的椭圆区间范围提示这些特征组合基本处于稳定的范围内。与蚜虫的取食行为和附着于植物表面相关的形态特征,如喙末端、跗节Ⅰ、跗节Ⅱ和爪等在不同类群间存在显著的相似性,暗示了寄生于竹类植物叶片的蚜虫在这些形态特征上的趋同适应。最后结合蚜虫的生物学信息,初步探讨了形态适应的机制。  相似文献   

10.
Aoki N  Matsuo H  Deshimaru M  Terada S 《Gene》2008,426(1-2):7-14
Five small serum proteins (SSPs) with molecular masses of 6.5-10 kDa were detected in Habu (Trimeresurus flavoviridis) serum; this included two novel proteins SSP-4 and SSP-5. The amino acid sequences of these proteins and of SSP-1, SSP-2, and SSP-3, which were reported previously, were determined on the basis of the nucleotide sequences of their cDNAs. Although these proteins exhibited only limited sequence identity to mammalian prostatic secretory protein of 94 amino acids (PSP94), the topological pattern of disulfide bonds in SSPs was identical to that of the mammalian proteins. SSP-3 and SSP-4 lacked approximately 30 residues at the C-terminal. Each of the full-length cDNAs encoded a mature protein of 62-90 residues and a highly conserved signal peptide. The evolutionary distances between SSPs estimated on the basis of the amino acid changes were significantly greater than those of the synonymous nucleotide substitutions; these finding, together with results from analyses of nonsynonymous to synonymous rates of change (dN/dS) suggest that snake SSPs have endured substantial accelerated adaptive protein evolution. Such accelerated positive selection in SSPs parallels other findings of similar molecular evolution in snake venom proteins and suggests that diversifying selection on both systems may be linked, and that snake SSP genes may have evolved by gene duplication and rapid diversification to facilitate the acquisition of various functions to block venom activity within venomous snakes.  相似文献   

11.
Phenoloxidases (POs) are required for the pea aphid's defense against bacterial and fungal infection. Prophenoloxidases (PPOs) are proteolytically converted to its active form PO through a clip domain serine protease cascade. In this study, we identified five clip domain serine proteases in the pea aphids. The messenger RNA levels of two of them, Ap_SPLP and Ap_VP, were upregulated by Gram‐positive bacterium Staphylococcus aureus and fungus Beauveria bassiana infections. Double‐stranded RNA‐based expression knockdown of these two genes resulted in reduced PO activity of the aphid hemolymph, higher loads of S. aureus and B. bassiana in the aphids, and lower survival rates of the aphids after infections. Our data suggest that Ap_SPLP and Ap_VP are involved in PPO activation pathway in the pea aphid.  相似文献   

12.
An impressive biodiversity (>10,000 species) of marine snails (suborder Toxoglossa or superfamily Conoidea) have complex venoms, each containing approximately 100 biologically active, disulfide-rich peptides. In the genus Conus, the most intensively investigated toxoglossan lineage (~500 species), a small set of venom gene superfamilies undergo rapid sequence hyperdiversification within their mature toxin regions. Each major lineage of Toxoglossa has its own distinct set of venom gene superfamilies. Two recently identified venom gene superfamilies are expressed in the large Turridae clade, but not in Conus. Thus, as major venomous molluscan clades expand, a small set of lineage-specific venom gene superfamilies undergo accelerated evolution. The juxtaposition of extremely conserved signal sequences with hypervariable mature peptide regions is unprecedented and raises the possibility that in these gene superfamilies, the signal sequences are conserved as a result of an essential role they play in enabling rapid sequence evolution of the region of the gene that encodes the active toxin.  相似文献   

13.
How competitive interactions and population structure promote or inhibit cooperation in animal groups remains a key challenge in social evolution. In eusocial aphids, there is no single explanation for what predisposes some lineages of aphids to sociality, and not others. Because the assumption has been that most aphid species occur in essentially clonal groups, the roles of intra- and interspecific competition and population structure in aphid sociality have been given little consideration. Here, I used microsatellites to evaluate the patterns of variation in the clonal group structure of both social and nonsocial aphid species. Multiclonal groups are consistent features across sites and host plants, and all species—social or not—can be found in groups composed of large fractions of multiple clones, and even multiple species. Between-group dispersal in gall-forming aphids is ubiquitous, implying that factors acting ultimately to increase between-clone interactions and decrease within-group relatedness were present in aphids prior to the origins of sociality. By demonstrating that between-group dispersal is common in aphids, and thus interactions between clones are also common, these results suggest that understanding the ecological dynamics of dispersal and competition may offer unique insights into the evolutionary puzzle of sociality in aphids.  相似文献   

14.
15.
Cover Caption     
《Insect Science》2017,24(3):NA-NA
Host alternation has significant consequences for the diversification and success of the superfamily of aphids. We explored the underlying molecular mechanism through a large‐scale gene expression analysis on the mealy aphid Hyalopterus persikonus, a worldwide pest to stone fruits, collected from its winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host. Putative salivary gland expressed genes and genes encoding secretory proteins were given special attentions (see pages 431–442). Photo provided by Le Kang.  相似文献   

16.
Insect myosuppressins and myosuppressin analogues were tested for oral toxicity against the pea aphid Acyrthosiphon pisum (Harris) by incorporation into an artificial diet. Acyrthosiphon pisum myosuppressin (Acypi-MS) and leucomyosuppressin (LMS) had significant dose-dependent effects (0.1-0.5μg peptide/μl diet) on feeding suppression, mortality, reduced growth and fecundity compared with control insects, but Acypi-MS was more potent than LMS. One hundred percent of aphids had died after 10days of feeding on 0.5μg Acypi-MS/μl diet whereas 40% of aphids feeding on 0.5μg LMS/μl diet were still alive after 13days. Myosuppressins were degraded by aphid gut enzymes; degradation was most likely due to a carboxypeptidase-like protease, an aminopeptidase and a cathepsin L cysteine protease. The estimated half-life of Acypi-MS in a gut extract was 30min, whereas LMS was degraded more slowly (t?=54min). No toxicity was observed when the analogues δR(9) LMS and citrolline(9) Acypi-MS or FMRFamide were fed to the pea aphid. These findings not only help to better understand the biological effects of myosuppressins in aphids but also demonstrate the potential use of myosuppressins in a strategy to control aphid pests.  相似文献   

17.
In social insects, local interactions among colony members facilitate information transfer, and allow the whole colony to regulate division of labor and task allocation in an integrated and coordinated manner. In particular, regulation of caste differentiation in response to external cues is important for sustaining social insect colonies. The social aphid Tuberaphis styraci exhibits a caste polyphenism, producing second‐instar soldiers and non‐soldiers. Previous studies using an artificial diet rearing system identified high aphid density as a crucial cue for soldier production, which acts on embryos in the maternal body and newborn first‐instar nymphs to induce soldier differentiation. While direct contact stimuli from live non‐soldiers were suggested to mediate the density effect, how the aphids perceive the stimuli has been unknown. Here we investigated how antennal removal of adult females affects the soldier production in T. styraci. Under a high density condition, intact females produced the highest percentage of soldiers, females deprived of both antennae produced the lowest percentage of soldiers, and females deprived of one antenna exhibited an intermediate percentage of soldiers. Scanning electron microscopic observations of the aphids revealed the existence of sensory organs for chemoreception and tactile sensation on the antennae of the mother aphids. These results indicate that T. styraci females use their antennae to perceive soldier‐inducing density cue, suggesting that maternal perception of density cue is involved in regulation over caste phenotype of their offspring.  相似文献   

18.
Zhao R  Dai H  Qiu S  Li T  He Y  Ma Y  Chen Z  Wu Y  Li W  Cao Z 《PloS one》2011,6(11):e27548

Background

Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized.

Principal Findings

A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (Ki = 1.6×10−7 M) and thermostability.

Conclusions

The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived from scorpion venom, and it represents a new class of Kunitz-type venom peptides.  相似文献   

19.
Lipase maturation factor (LMF) family proteins are required for the maturation and transport of active lipoprotein lipases. However, the specific roles of LMF2 remain unknown. In this study, a grain aphid lmf2‐like gene fragment was cloned and was highly similar in sequence to a homologous gene in the pea aphid, Acyrthosiphon pisum. An RNAi vector was constructed with this fragment and used for wheat transformation. The expression of the lmf2‐like gene in aphid, as well as the growth and reproduction of the aphids, was analyzed after feeding on the transgenic wheat. There were no significant differences in the expression of the lmf2‐like gene over development. The expression of the lmf2‐like gene was significantly reduced by 27.6% on the fifth day, and 57.6% on the 10th day after feeding. The total number of aphids produced on the transgenic plants was less than the number produced on control plants, and the difference became significant or after 2 weeks. The molting numbers were also reduced in the aphids reared on the transgenic plants. Our findings indicate that lmf2‐like genes may have potential as a target gene for the control of grain aphids and show that feeding aphids with wheat expressing lmf2‐like RNAi resulted in significant reductions in survival and reproduction.  相似文献   

20.
Jansa SA  Voss RS 《PloS one》2011,6(6):e20997
The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号