首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rho family small GTPases are critical regulators of multiple cellular functions. Dbl-homology-domain-containing proteins are the classical GEFs (guanine nucleotide exchange factors) responsible for activation of Rho proteins. Zizimin1 is a Cdc42-specific GEF that belongs to a second family of mammalian Rho-GEFs, CZH [CDM (Ced-5/DOCK180/Myoblast city)-zizimin homology] proteins, which possess a novel type of GEF domain. CZH proteins can be divided into a subfamily related to DOCK 180 and a subfamily related to zizimin1. The two groups share two conserved regions named the CZH1 (or DHR1) domain and the CZH2 (DHR2 or DOCKER) domains, the latter exhibiting GEF activity. We now show that limited proteolysis of zizimin1 suggests the existence of structural domains that do not correspond to those identified on the basis of homologies. We demonstrate that the N-terminal half binds to the GEF domain through three distinct areas, including the CZH1, to inhibit the interaction with Cdc42. The N-terminal PH (pleckstrin homology) domain binds phosphoinositides and mediates zizimin1 membrane targeting. These results define two novel functions for the N-terminal region of zizimin1.  相似文献   

2.
BACKGROUND: Cloned-out of library-2 (Cool-2)/PAK-interactive exchange factor (alpha-Pix) was identified through its ability to bind the Cdc42/Rac target p21-activated kinase (PAK) and has been implicated in certain forms of X-linked mental retardation as well as in growth factor- and chemoattractant-coupled signaling pathways. We recently found that the dimeric form of Cool-2 is a specific guanine nucleotide exchange factor (GEF) for Rac, whereas monomeric Cool-2 is a GEF for Cdc42 as well as Rac. However, unlike many GEFs, Cool-2 binds to activated forms of Cdc42 and Rac. Thus, we have investigated the functional consequences of these interactions. RESULTS: We show that the binding of activated Cdc42 to the Cool-2 dimer markedly enhances its ability to associate with GDP bound Rac1, resulting in a significant activation of Rac-GEF activity. While the Rac-specific GEF activity of Cool-2 is mediated through the Dbl homology (DH) domain from one monomer and the Pleckstrin homology domain from the other, activated Cdc42 interacts with the DH domain, most likely opposite the DH domain binding site for GDP bound Rac. Activated Rac also binds to Cool-2; however, it strongly inhibits the GEF activity of dimeric Cool-2. CONCLUSIONS: We provide evidence for novel mechanisms of allosteric regulation of the Rac-GEF activity of the Cool-2 dimer, involving stimulatory effects by Cdc42 and feedback inhibition by Rac. These findings demonstrate that by serving as a target for GTP bound Cdc42 and a GEF for Rac, Cool-2 mediates a GTPase cascade where the activation of Cdc42 is translated into the activation of Rac.  相似文献   

3.
Recognition of cognate Rho GTPases by guanine-nucleotide exchange factors (GEF) is fundamental to Rho GTPase signaling specificity. Two main GEF families use either the Dbl homology (DH) or the DOCK homology region 2 (DHR-2) catalytic domain. How DHR-2-containing GEFs distinguish between the GTPases Rac and Cdc42 is not known. To determine how these GEFs specifically recognize the two Rho GTPases, we studied the amino acid sequences in Rac2 and Cdc42 that are crucial for activation by DOCK2, a Rac-specific GEF, and DOCK9, a distantly related Cdc42-specific GEF. Two elements in the N-terminal regions of Rac2 and Cdc42 were found to be essential for specific interactions with DOCK2 and DOCK9. One element consists of divergent amino acid residues in the switch 1 regions of the GTPases. Significantly, these residues were also found to be important for GTPase recognition by Rac-specific DOCK180, DOCK3, and DOCK4 GEFs. These findings were unexpected because the same residues were shown previously to interact with GTPase effectors rather than GEFs. The other element comprises divergent residues in the beta3 strand that are known to mediate specific recognition by DH domain containing GEFs. Remarkably, Rac2-to-Cdc42 substitutions of four of these residues were sufficient for Rac2 to be specifically activated by DOCK9. Thus, DOCK2 and DOCK9 specifically recognize Rac2 and Cdc42 through their switch 1 as well as beta2-beta3 regions and the mode of recognition via switch 1 appears to be conserved among diverse Rac-specific DHR-2 GEFs.  相似文献   

4.
DOCK (dedicator of cytokinesis) guanine nucleotide exchange factors (GEFs) activate the Rho-family GTPases Rac and Cdc42 to control cell migration, morphogenesis, and phagocytosis. The DOCK A and B subfamilies activate Rac, whereas the DOCK D subfamily activates Cdc42. Nucleotide exchange is catalyzed by a conserved DHR2 domain (DOCK(DHR2)). Although the molecular basis for DOCK(DHR2)-mediated GTPase activation has been elucidated through structures of a DOCK9(DHR2)-Cdc42 complex, the factors determining recognition of specific GTPases are unknown. To understand the molecular basis for DOCK-GTPase specificity, we have determined the crystal structure of DOCK2(DHR2) in complex with Rac1. DOCK2(DHR2) and DOCK9(DHR2) exhibit similar tertiary structures and homodimer interfaces and share a conserved GTPase-activating mechanism. Multiple structural differences between DOCK2(DHR2) and DOCK9(DHR2) account for their selectivity toward Rac1 and Cdc42. Key determinants of selectivity of Cdc42 and Rac for their cognate DOCK(DHR2) are a Phe or Trp residue within β3 (residue 56) and the ability of DOCK proteins to exploit differences in the GEF-induced conformational changes of switch 1 dependent on a divergent residue at position 27. DOCK proteins, therefore, differ from DH-PH GEFs that select their cognate GTPases through recognition of structural differences within the β2/β3 strands.  相似文献   

5.
DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.  相似文献   

6.
Dedicator-of-cytokinesis (DOCK) proteins are a family of guanine-nucleotide exchange factors (GEF) for Rho GTPases. The DOCK-D homology subfamily comprises DOCK9, DOCK10, and DOCK11. DOCK9 and DOCK11 are GEFs for Cdc42 and induce filopodia, while DOCK10 is a dual GEF for Cdc42 and Rac1 and induces filopodia and ruffles. We provide data showing that DOCK9, the only one of the DOCK-D members that is not considered hematopoietic, is nevertheless expressed at high levels in T lymphocytes, as do DOCK10 and DOCK11, although unlike these, it is not expressed in B lymphocytes. To investigate DOCK9 function, we have created a stable HeLa clone with inducible expression of HA-DOCK9. Induction of expression of HA-DOCK9 produced loss of elongation and polygonal shape of HeLa cells. Regarding membrane protrusions, HA-DOCK9 prominently induced filopodia, but also an increase of membrane ruffles. The latter was consistent with an increase in the levels of activation of Rac1, suggesting that DOCK9 carries a secondary ability to induce ruffles through activation of Rac1.  相似文献   

7.
Asef is a member of the Dbl-family of guanine nucleotide exchange factors (GEFs) with a proposed specificity for the small GTPase Rac1. Here we investigated the specificity and regulation of Asef by measuring its GEF activity in vitro and observed hardly any activity towards Rac1, Rac2 and Rac3, or RhoA and TC10. In contrast, various purified Asef protein fragments catalyzed the nucleotide exchange reaction of Cdc42. The Cdc42GEF activity of the Dbl homology (DH) domain of Asef was significantly higher in the presence of the pleckstrin homology (PH) domain. Our data strongly suggest that Asef is a canonical Cdc42GEF, which employs its PH domain to efficiently stabilize its autoinhibited state, but also to facilitate nucleotide exchange activity of the DH domain after its activation by upstream signals.  相似文献   

8.
Generation of cellular asymmetry or cell polarity plays a critical role in cell-cycle-regulated morphogenetic processes involving the actin cytoskeleton. The GTPase Cdc42 regulates actin rearrangements and signal transduction pathways in all eukaryotic cells [1], and the temporal and spatial regulation of Cdc42p depends on the activity and targeting of its guanine-nucleotide exchange factor (GEF). Cdc24p, the Saccharomyces cerevisiae GEF for Cdc42p, is found in a particulate fraction and localizes to the plasma membrane [2] [3] at sites of polarized growth [4]. We show that Cdc24p labeled with green fluorescent protein (GFP-Cdc24p) was targeted to pre-bud sites, the tips and sides of enlarging buds, and mating projections in pheromone-treated cells. Unexpectedly, GFP-Cdc24p also localized to the nucleus and GFP-Cdc24p levels diminished before nuclear division followed by its reappearance in divided nuclei and mother-bud necks during cytokinesis. The Cdc24p amino-terminal 283 amino acids were necessary and sufficient for nuclear localization, which depended on the cyclin-dependent-kinase inhibitor Far1p. The Cdc24p carboxy-terminal 289 amino acids were necessary and sufficient for targeting to the pre-bud site, bud, mother-bud neck, and mating projection. Targeting was independent of the Cdc24p-binding proteins Far1p, the GTPase Rsr1p/Bud1p, the scaffold protein Bem1p, and the G(beta) subunit Ste4p. These data are consistent with a temporal and spatial regulation of Cdc24p-dependent activation of Cdc42p during the cell cycle.  相似文献   

9.
Alterations of T-cell receptor signaling by human immunodeficiency virus type 1 (HIV-1) Nef involve its association with a highly active subpopulation of p21-activated kinase 2 (PAK2) within a dynamic signalosome assembled in detergent-insoluble membrane microdomains. Nef-PAK2 complexes contain the GTPases Rac and Cdc42 as well as a factor providing guanine nucleotide exchange factor (GEF) activity for Rac/Cdc42. However, the identity of this GEF has remained controversial. Previous studies suggested the association of Nef with at least three independent GEFs, Vav, DOCK2/ELMO1, and βPix. Here we used a broad panel of approaches to address which of these GEFs is involved in the functional interaction of Nef with PAK2 activity. Biochemical fractionation and confocal microscopy revealed that Nef recruits Vav1, but not DOCK2/ELMO1 or βPix, to membrane microdomains. Transient RNAi knockdown, analysis of cell lines defective for expression of Vav1 or DOCK2 as well as use of a βPix binding-deficient PAK2 variant confirmed a role for Vav1 but not DOCK2 or βPix in Nef's association with PAK2 activity. Nef-mediated microdomain recruitment of Vav1 occurred independently of the Src homology 3 domain binding PxxP motif, which is known to connect Nef to many cellular signaling processes. Instead, a recently described protein interaction surface surrounding Nef residue F195 was identified as critical for Nef-mediated raft recruitment of Vav1. These results identify Vav1 as a relevant component of the Nef-PAK2 signalosome and provide a molecular basis for the role of F195 in formation of a catalytically active Nef-PAK2 complex.  相似文献   

10.
Cell division control protein 42 homolog (Cdc42) influences a variety of cellular responses such as cell migration and polarity. Deregulation of Cdc42 has been associated with several human diseases and developmental disorders. Over-activation of Cdc42 through guanine nucleotide exchange factor (GEF) is a critical event for Cdc42 involved cancer metastasis. Members of DOCK family of GEF are important activators of Cdc42. However, this activation mechanism is still unknown. Molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations were employed to investigate the central step of the activation of Cdc42: the dissociation mechanism of GDP from Cdc42 via DOCK9. Simulation results show that Mg2+ ion has a remarkable influence on the conformational change of switch I of Cdc42 through residue Pro34 which functions as a “clasp” to control the flexibility of switch I. In the GDP dissociation process, the Mg2+ ion leave first to result in a suitable conformation of Cdc42 for following DOCK9 binding to. When DOCK9 binds to Cdc42, it changes the orientations of residues Lys16, Thr17, Cys18 and Phe28 of Cdc42 to weaken the interactions between Cdc42 and GDP to release GDP. This study first elucidates the dissociation mechanism of GDP from Cdc42 via DOCK9 and identifies the essential residues of Cdc42 in this process. These simulation results are consistent with the recent findings of biochemical and amino acid mutational studies, and the observations are beneficial to understand the activation mechanism of Cdc42 and to provide insights for designing compounds targeting on Cdc42 related cancer metastasis.  相似文献   

11.
The dedicator of cytokinesis (DOCK) family of guanine nucleotide exchange factors (GEFs) regulates cytoskeletal dynamics by activating the GTPases Rac and/or Cdc42. Eleven human DOCK proteins play various important roles in developmental processes and the immune system. Of these, DOCK1–5 proteins bind to engulfment and cell motility (ELMO) proteins to perform their physiological functions. Recent structural studies have greatly enhanced our understanding of the complex and diverse mechanisms of DOCK GEF activity and GTPase recognition and its regulation by ELMO. This review is focused on gaining structural insights into the substrate specificity of the DOCK GEFs, and discuss how Rac and Cdc42 are specifically recognized by the catalytic DHR-2 and surrounding domains of DOCK or binding partners.  相似文献   

12.
Feng Q  Baird D  Cerione RA 《The EMBO journal》2004,23(17):3492-3504
The Cool-2 (cloned-out of library-2) protein (identical to alpha-Pix for Pak-interactive exchange factor) has been implicated in various biological responses including chemoattractant signaling and in certain forms of mental retardation. We show that when Cool-2 exists as a dimer, it functions as a Rac-specific guanine nucleotide exchange factor (GEF). Dimerization of Cool-2 enables its Dbl (diffuse B-cell lymphoma) and pleckstrin homology domains to work together (in trans) to bind specifically to Rac-GDP. Dissociation of dimeric Cool-2 into its monomeric form allows it to act as a GEF for Cdc42 as well as for Rac. The binding of either PAK (p21-activated kinase) or Cbl (Casitas B-lymphoma) to the SH3 domain of monomeric Cool-2 is necessary for the functional interactions between GDP-bound Cdc42 or Rac and the Cool-2 monomer. The betagamma subunit complex of large GTP-binding proteins, by interacting with PAK, stimulates the dissociation of the Cool-2 dimer and activates its GEF activity for Cdc42. Overall, these findings highlight novel mechanisms by which extracellular signals can direct the specific activation of Rac versus Cdc42 by Cool-2/alpha-Pix.  相似文献   

13.
Rho family small GTPases are critical regulators of multiple cellular processes and activities. Dbl homology domain-containing proteins are the classical guanine nucleotide exchange factors (GEFs) responsible for activation of Rho proteins. Recently another group of mammalian Rho-GEFs was discovered that includes CDM (Ced-5, DOCK180, Myoblast city) proteins that activate Rac and zizimin1 that activates Cdc42 via a nonconventional GEF module that we named the CZH2 domain. We report here that zizimin1 dimerizes via the CZH2 domain and that dimers are the only form detected. Dimerization was mapped to a approximately 200-amino acid region that overlaps but is distinct from the Cdc42-binding sequences. Rotary shadowing electron microscopy revealed zizimin1 to be a symmetric, V-shaped molecule. Experiments with DOCK180 and homology analysis suggest that dimerization may be a general feature of CZH proteins. Deletion and mutation analysis indicated existence of individual Cdc42-binding sites in the zizimin1 monomers. Kinetic measurements demonstrated increased binding affinity of Cdc42 to zizimin1 at higher Cdc42 concentration, suggesting positive cooperativity. These features are likely to be critical for Cdc42 activation.  相似文献   

14.
Several guanine nucleotide exchange factors (GEFs) for Rho-GTPases have been identified, all of them containing a Dbl homology (DH) and pleckstrin homology (PH) domain, but exhibiting different specificities to the Rho family members, Rho, Rac and Cdc42. We report here that KIAA0380, a protein with a tandem DH/PH domain, an amino-terminal PDZ domain and a regulator of G protein signalling (RGS) homology domain, is a specific GEF for RhoA, but not for Rac1 and Cdc42, as determined by GDP release, guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) binding and protein binding assays. When expressed in J82 cells, DH/PH domain-containing forms of KIAA0380 induced actin stress fibers, whereas expression of the RGS homology domain prevented lysophosphatidic acid (LPA)-induced stress fiber formation.  相似文献   

15.
The Rho family GTPases Rac, Rho and Cdc42 are critical in regulating the actin-based cytoskeleton, cell migration, growth, survival and gene expression. These GTPases are activated by guanine nucleotide-exchange factors (GEFs). A biochemical search for Cdc42 activators led to the cloning of zizimin1, a new protein whose overexpression induces Cdc42 activation. Sequence comparison combined with mutational analysis identified a new domain, which we named CZH2, that mediates direct interaction with Cdc42. CZH2-containing proteins constitute a new superfamily that includes the so-called 'CDM' proteins that bind to and activate Rac. Together, the results suggest that CZH2 is a new GEF domain for the Rho family of proteins.  相似文献   

16.
BACKGROUND: Tumor cells can move in a three-dimensional (3D) environment in either mesenchymal-type or amoeboid modes. In mesenchymal-type movement, cells have an elongated morphology with Rac-induced protrusions at the leading edge. Amoeboid cells have high levels of actomyosin contractility, and movement is associated with deformation of the cell body through the matrix without proteolysis. Because signaling pathways that control the activation of GTPases for amoeboid movement are poorly understood, we sought to identify regulators of amoeboid movement by screening an siRNA library targeting guanine nucleotide exchange factors (GEFs) for Rho-family GTPases. RESULTS: We identified DOCK10, a Cdc42 GEF, as a key player in amoeboid migration; accordingly, we find that expression of activated Cdc42 induces a mesenchymal-amoeboid transition and increases cell invasion. Silencing DOCK10 expression promotes conversion to mesenchymal migration and is associated with decreased MLC2 phosphorylation and increased Rac1 activation. Consequently, abrogating DOCK10 and Rac1 expression suppresses both amoeboid and mesenchymal migration and results in decreased invasion. We show that the Cdc42 effectors N-WASP and Pak2 are required for the maintenance of the rounded-amoeboid phenotype. Blocking Cdc42 results in loss of mesenchymal morphology, arguing that Cdc42 is also involved in mesenchymal morphology through different activation and effector pathways. CONCLUSIONS: Previous work has identified roles of Rho and Rac signaling in tumor cell movement, and we now elucidate novel roles of Cdc42 signaling in amoeboid and mesenchymal movement and tumor cell invasion.  相似文献   

17.
Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton.  相似文献   

18.
The Saccharomyces cerevisiae kinase Ste20 is a member of the p21-activated kinase (PAK) family with several functions, including pheromone-responsive signal transduction. While PAKs are usually activated by small G proteins and Ste20 binds Cdc42, the role of Cdc42-Ste20 binding has been controversial, largely because Ste20 lacking its entire Cdc42-binding (CRIB) domain retains kinase activity and pheromone response. Here we show that, unlike CRIB deletion, point mutations in the Ste20 CRIB domain that disrupt Cdc42 binding also disrupt pheromone signaling. We also found that Ste20 kinase activity is stimulated by GTP-bound Cdc42 in vivo and this effect is blocked by the CRIB point mutations. Moreover, the Ste20 CRIB and kinase domains bind each other, and mutations that disrupt this interaction cause hyperactive kinase activity and bypass the requirement for Cdc42 binding. These observations demonstrate that the Ste20 CRIB domain is autoinhibitory and that this negative effect is antagonized by Cdc42 to promote Ste20 kinase activity and signaling. Parallel results were observed for filamentation pathway signaling, suggesting that the requirement for Cdc42-Ste20 interaction is not qualitatively different between the mating and filamentation pathways. While necessary for pheromone signaling, the role of the Cdc42-Ste20 interaction does not require regulation by pheromone or the pheromone-activated G beta gamma complex, because the CRIB point mutations also disrupt signaling by activated forms of the kinase cascade scaffold protein Ste5. In total, our observations indicate that Cdc42 converts Ste20 to an active form, while pathway stimuli regulate the ability of this active Ste20 to trigger signaling through a particular pathway.  相似文献   

19.
Rho GTPases regulate the assembly of cellular actin structures and are activated by GEFs (guanine-nucleotide-exchange factors) and rendered inactive by GAPs (GTPase-activating proteins). Using the Rho GTPases Cdc42, Rac1 and RhoA, and the GTPase-binding portions of the effector proteins p21-activated kinase and Rhophilin1, we have developed split luciferase assays for detecting both GEF and GAP regulation of these GTPases. The system relies on purifying split luciferase fusion proteins of the GTPases and effectors from bacteria, and our results show that the assays replicate GEF and GAP specificities at nanomolar concentrations for several previously characterized Rho family GEFs (Dbl, Vav2, Trio and Asef) and GAPs [p190, Cdc42 GAP and PTPL1-associated RhoGAP]. The assay detected activities associated with purified recombinant GEFs and GAPs, cell lysates expressing exogenous proteins, and immunoprecipitates of endogenous Vav1 and p190. The results demonstrate that the split luciferase system provides an effective sensitive alternative to radioactivity-based assays for detecting GTPase regulatory protein activities and is adaptable to a variety of assay conditions.  相似文献   

20.
The migratory properties of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain the Dbl homology domain typically found in guanine nucleotide exchange factors (GEFs), DOCK2 mediates the GTP-GDP exchange reaction for Rac via its DOCK homology region (DHR)-2 (also known as CZH2 or Docker) domain. DOCK2 DHR-2 domain is composed of three lobes, and Rac binding site and catalytic center are generated entirely from lobes B and C. On the other hand, lobe A has been implicated in dimer formation, yet its physiological significance remains unknown. Here, we report that lobe A-mediated DOCK2 dimerization is crucial for Rac activation and lymphocyte migration. We found that unlike wild-type DOCK2, DOCK2 mutant lacking lobe A failed to restore motility and polarity when expressed in thymoma cells and primary T cells lacking endogenous expression of DOCK2. Similar results were obtained with the DOCK2 point mutant having a defect in dimerization. Deletion of lobe A from the DHR-2 domain did not affect Rac GEF activity in vitro. However, fluorescence resonance energy transfer analyses revealed that lobe A is required for DOCK2 to activate Rac effectively during cell migration. Our results thus indicate that DOCK2 dimerization is functionally important under the physiological condition where only limited amounts of DOCK2 and Rac are localized to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号