首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In seven families, six different mutant alleles of TRIOBP on chromosome 22q13 cosegregate with autosomal recessive nonsyndromic deafness. These alleles include four nonsense (Q297X, R788X, R1068X, and R1117X) and two frameshift (D1069fsX1082 and R1078fsX1083) mutations, all located in exon 6 of TRIOBP. There are several alternative splice isoforms of this gene, the longest of which, TRIOBP-6, comprises 23 exons. The linkage interval for the deafness segregating in these families includes DFNB28. Genetic heterogeneity at this locus is suggested by three additional families that show significant evidence of linkage of deafness to markers on chromosome 22q13 but that apparently have no mutations in the TRIOBP gene.  相似文献   

2.
Tight junctions in the cochlear duct are thought to compartmentalize endolymph and provide structural support for the auditory neuroepithelium. The claudin family of genes is known to express protein components of tight junctions in other tissues. The essential function of one of these claudins in the inner ear was established by identifying mutations in CLDN14 that cause nonsyndromic recessive deafness DFNB29 in two large consanguineous Pakistani families. In situ hybridization and immunofluorescence studies demonstrated mouse claudin-14 expression in the sensory epithelium of the organ of Corti.  相似文献   

3.
We have identified five different homozygous recessive mutations in a novel gene, TMIE (transmembrane inner ear expressed gene), in affected members of consanguineous families segregating severe-to-profound prelingual deafness, consistent with linkage to DFNB6. The mutations include an insertion, a deletion, and three missense mutations, and they indicate that loss of function of TMIE causes hearing loss in humans. TMIE encodes a protein with 156 amino acids and exhibits no significant nucleotide or deduced amino acid sequence similarity to any other gene.  相似文献   

4.
Human chromosome 11 harbors two Usher type I loci, USHIB and USHIC, which encode myosin VIIA and harmonin, respectively. The USHIC locus overlaps the reported critical interval for nonsyndromic deafness locus DFNB18. We found an IVS12+5G-->C mutation in the USHIC gene, which is associated with nonsyndromic recessive deafness ( DFNB18) segregating in the original family, S-11/12. No other disease-associated mutation was found in the other 27 exons or in the intron-exon boundaries, and the IVS12+5G-->C mutation was not present in 200 representative unaffected individuals ascertained from the same area of India. An exon-trapping assay with a construct harboring IVS12+5G-->C generated wildtype spliced mRNA having exons 11 and 12 and mRNA that skipped exon 12. We conclude that mutations of USHIC can cause both Usher syndrome type IC and nonsyndromic recessive deafness DFNB18.  相似文献   

5.
Nonsyndromic deafness locus (DFNB48) segregating as an autosomal recessive trait has been mapped to the long arm of chromosome 15 in bands q23-q25.1 in five large Pakistani families. The deafness phenotype in one of these five families (PKDF245) is linked to D15S1005 with a lod score of 8.6 at =0, and there is a critical linkage interval of approximately 7 cM on the Marshfield human genetic map, bounded by microsatellite markers D15S216 (70.73 cM) and D15S1041 (77.69 cM). MYO9A, NR2E3, BBS4, and TMC3 are among the candidate genes in the DFNB48 region. The identification of another novel nonsyndromic recessive deafness locus demonstrates the high degree of locus heterogeneity for hearing impairment, particularly in the Pakistani population.  相似文献   

6.
We ascertained three consanguineous Pakistani families (PKDF291, PKDF335 and PKDF793) segregating nonsyndromic recessive hearing loss. The hearing loss segregating in PKDF335 and PKDF793 is moderate to severe, whereas it is profound in PKDF291. The maximum two-point LOD scores are 3.01 (D19S1034), 3.85 (D19S894) and 3.71 (D19S894) for PKDF291, PKDF335 and PKDF793, respectively. Haplotype analyses of the three families define a 1.16 Mb region of overlap of the homozygous linkage intervals bounded by markers D19S216 (20.01 cM) and D19S1034 (20.75 cM). These results define a novel locus, DFNB72, on chromosome 19p13.3. There are at least 22 genes in the 1.16 Mb interval, including PTPRS, ZNRF4 and CAPS. We identified no pathogenic variants in the exons and flanking intronic sequences of these three genes in affected members of the DFNB72 families. DFNB72 is telomeric to DFNB68, the only other known deafness locus with statistically significant support for linkage to chromosome 19p.  相似文献   

7.
Hereditary non-syndromic deafness is extremely heterogeneous. Autosomal recessive forms account for approximately 80% of genetic cases. Autosomal recessive non-syndromic sensorineural deafness segregating in a large consanguineous Tunisian family was mapped to chromosome 6p21.2-22.3. A maximum lod score of 5.36 at theta=0 was obtained for the polymorphic microsatellite marker IR2/IR4. Haplotype analysis defined a 16.5-Mb critical region between microsatellite markers D6S1602 and D6S1665. The screening of 3 candidate genes, COL11A2, BAK1 and TMHS, did not reveal any disease causing mutation, suggesting that this is a novel deafness locus, which has been named DFNB66. A search in the Human Cochlear EST Library for ESTs located in this critical interval allowed us to identify several candidates. Further investigations on these candidates are needed in order to identify the deafness-causing gene in this Tunisian family.  相似文献   

8.
Deafness is a heterogeneous trait affecting approximately 1/1,000 newborns. Genetic linkage studies have already implicated more than a dozen distinct loci causing deafness. We conducted a genome search for linkage in a large Palestinian family segregating an autosomal recessive form of nonsyndromic deafness. Our results indicate that in this family the defective gene, DFNB10, is located in a 12-cM region near the telomere of chromosome 21. This genetic distance corresponds to <2.4 Mbp. Five marker loci typed from this region gave maximum LOD scores > or = to 3. Homozygosity of marker alleles was evident for only the most telomeric marker, D21S1259, suggesting that DFNB10 is closest to this locus. To our knowledge, this is the first evidence, at this location, for a gene that is involved in the development or maintenance of hearing. As candidate genes at these and other deafness loci are isolated and characterized, their roles in hearing will be revealed and may lead to development of mechanisms to prevent deafness.  相似文献   

9.
The physiological importance of connexin-26 (Cx26) gap junctions in regulating auditory function is indicated by the finding that autosomal recessive DFNB1 deafness is associated with mutations of the Cx26 gene. To investigate the pathogenic role of Cx26 mutation in recessive hearing loss, four putative DFNB1 Cx26 mutants (V84L, V95M, R127H, and R143W) were stably expressed in N2A cells, a communication-deficient cell line. In N2A cells expressing (R127H) Cx26 gap junctions, macroscopic junctional conductance and ability of transferring neurobiotin between transfected cells were greatly reduced. Despite the formation of defective junctional channels, immunoreactivity of (R127H) Cx26 was mainly localized in the cell membrane and prominent in the region of cell-cell contact. Mutant (V84L), (V95M), or (R143W) Cx26 protein formed gap junctions with a junctional conductance similar to that of wild-type Cx26 junctional channels. (V84L), (V95M), or (R143W) Cx26 gap junctions also permitted neurobiotin transfer between pairs of transfected N2A cells. The present study suggests that (R127H) mutation associated with hereditary sensorineural deafness results in the formation of defective Cx26 gap junctions, which may lead to the malfunction of cochlear gap junctions and hearing loss. Further studies are required to determine the exact mechanism by which mutant (V84L), (V95M), and (R143W) Cx26 proteins, which are capable of forming functional homotypic junctional channels in N2A cells, cause the cochlear dysfunction and sensorineural deafness.  相似文献   

10.
11.
In a large consanguineous Palestinian kindred, we previously mapped DFNB28--a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment--to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious missense mutation (G1019R) occurs in a conserved motif in a putative SH3-binding domain. In seven families, 27 deaf individuals are homozygous for one of the nonsense mutations; in two other families, 3 deaf individuals are compound heterozygous for the two nonsense mutations or for Q581X and G1019R. The novel long isoform of TRIOBP has a restricted expression profile, including cochlea, retina, and fetal brain, whereas the original short isoform is widely expressed. Antibodies to TRIOBP reveal expression in sensory cells of the inner ear and colocalization with F-actin along the length of the stereocilia.  相似文献   

12.
Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156−2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156−2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.  相似文献   

13.
Previous studies of the gap-junction beta-2 subunit gene GJB2 (connexin 26) have suggested that the 101T-->C (M34T) nucleotide substitution may be a mutant allele responsible for recessive deafness DFNB1. This hypothesis was consistent with observations of negligible intercellular coupling and gap-junction assembly of the M34T allele product expressed in Xenopus oocytes and HeLa cells. The results of our current study of a family cosegregating the 167delT allele of GJB2 and severe DFNB1 deafness demonstrate that this phenotype did not cosegregate with the compound-heterozygous genotype M34T/167delT. Since 167delT is a null allele of GJB2, this result indicates that the in vivo activity of a single M34T allele is not sufficiently reduced to cause the typical deafness phenotype associated with DFNB1. This observation raises the possibility that other GJB2 missense substitutions may not be recessive mutations that cause severe deafness and emphasizes the importance of observing cosegregation with deafness in large families to confirm that these missense alleles are mutant DFNB1 alleles.  相似文献   

14.
15.
16.
Classical studies have demonstrated genetic heterogeneity for nonsyndromic autosomal recessive congenital neurosensory deafness. The first two DFNB1 and DFNB2 locations were found using two consanguineous Tunisian families respectively from north and south. We tested these loci for cosegregation with deafness in twenty four southern families with nonsyndromic presumed congenital sensorineural deafness and a pedigree structure consistent with autosomal recessive inheritance. Only in our families, did deafness cosegregate with DFNB1. Although our families are from the south, none of them showed linkage to DFNB2.  相似文献   

17.
Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disorder, is characterized by increased ventricular wall thickness that cannot be explained by underlying conditions, cadiomyocyte hypertrophy and disarray, and increased myocardial fibrosis. In as many as 50% of HCM cases, the genetic cause remains unknown, suggesting that more genes may be involved. Nexilin, encoded by NEXN, is a cardiac Z-disc protein recently identified as a crucial protein that functions to protect cardiac Z-discs from forces generated within the sarcomere. We screened NEXN in 121 unrelated HCM patients who did not carry any mutation in eight genes commonly mutated in myofilament disease. Two missense mutations, c.391C>G (p.Q131E) and c.835C>T (p.R279C), were identified in exons 5 and 8 of NEXN, respectively, in two probands. Each of the two mutations segregated with the HCM phenotype in the family and was absent in 384 control chromosomes. In silico analysis revealed that both of the mutations affect highly conserved amino acid residues, which are predicted to be functionally deleterious. Cellular transfection studies showed that the two mutations resulted in local accumulations of nexilin and that the expressed fragment of actin-binding domain containing p.Q131E completely lost the ability to bind F-actin in C2C12 cells. Coimmunoprecipitation assay indicated that the p.Q131E mutation decreased the binding of full-length NEXN to α-actin and abolished the interaction between the fragment of actin-binding domain and α-actin. Therefore, the mutations in NEXN that we describe here may further expand the knowledge of Z-disc genes in the pathogenesis of HCM.  相似文献   

18.
19.
20.
A gene causing autosomal-recessive, nonsyndromic hearing loss, DFNB39, was previously mapped to an 18 Mb interval on chromosome 7q11.22-q21.12. We mapped an additional 40 consanguineous families segregating nonsyndromic hearing loss to the DFNB39 locus and refined the obligate interval to 1.2 Mb. The coding regions of all genes in this interval were sequenced, and no missense, nonsense, or frameshift mutations were found. We sequenced the noncoding sequences of genes, as well as noncoding genes, and found three mutations clustered in intron 4 and exon 5 in the hepatocyte growth factor gene (HGF). Two intron 4 deletions occur in a highly conserved sequence that is part of the 3′ untranslated region of a previously undescribed short isoform of HGF. The third mutation is a silent substitution, and we demonstrate that it affects splicing in vitro. HGF is involved in a wide variety of signaling pathways in many different tissues, yet these putative regulatory mutations cause a surprisingly specific phenotype, which is nonsydromic hearing loss. Two mouse models of Hgf dysregulation, one in which an Hgf transgene is ubiquitously overexpressed and the other a conditional knockout that deletes Hgf from a limited number of tissues, including the cochlea, result in deafness. Overexpression of HGF is associated with progressive degeneration of outer hair cells in the cochlea, whereas cochlear deletion of Hgf is associated with more general dysplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号