首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coat-color patterns of 20 C3H/HeN++BALB/cA chimeras produced by using the same colony of mice in a series of experiments, were quantitatively analyzed, by means of a video-image analysis system developed by Tachi (1988, 1989). In those chimeras, proportion of the two allogeneic components, i.e., C3H/HeN and BALB/cA, was relatively well balanced between the right and the left halves of the pelts, whereas between the anterior and the posterior regions it was unbalanced in favor of BALB/cA components in the anterior region. To interpret the results, a computerized geometrical model intended to simulate the hypothetical conditions of chimeric germ layers during early embryogenesis, was constructed. From the model, it was proposed that the seemingly high selection pressure for the BALB/cA components in the anterior region of this particular group of chimeras, might have been caused because the initial steps of the determination of the cranio-caudal axis took place in the regions of the primary ectoderm where BALB/cA, rather than C3H/HeN blastomeres were predominant. Possible variations in the alleles of the genes regulating the germ layer differentiation, might conceivably be the cause for the observed tendencies.  相似文献   

2.
Chimeras provide unique opportunities to study interactions between the phenotypically similar but genotypically allogeneic cell populations during embryogenesis in vivo. From the quantitative analysis of coat-color patterns in C3H/HeN----BALB/cA chimeras, a model was proposed stating that the aggregability of the C3H/HeN-derived melanoblasts in the chimeras was inversely related to the ratio between the mean free path of the epidermal melanoblasts in the normal C3H/HeN mouse and that in the chimeras. As a corollary, the possibility was suggested that during the migration of melanoblasts, mechanisms identical with or similar to contact inhibition of movement might operate after collision between the isogeneic, but not between the allogeneic melanoblasts. With regard to the number of melanoblast clones in the trunk region of the mouse, the present series of analyses yielded the value of 24-28 arranged unilaterally; the value closely approximated the number of the somites in that region and provided further support for the proposition made earlier by Tachi [Dev Genet 9: 121-154, 1988; "Development of Preimplantation Embryos and Their Environment." New York: Alan R. Liss, Inc., 1989, pp 263-274].  相似文献   

3.
Gene targeting in embryonic stem (ES) cells allows the production of mice with specified genetic mutations. Currently, germline-competent ES cell lines are available from only a limited number of mouse strains, and inappropriate ES cell/host blastocyst combinations often restrict the efficient production of gene-targeted mice. Here, we describe the derivation of C57BL/6J (B6) ES lines and compare the effectiveness of two host blastocyst donors, FVB/NJ (FVB) and the coisogenic strain C57BL/6-Tyr(c)-2J (c2J), for the production of germline chimeras. We found that when B6 ES cells were injected into c2J host blastocysts, a high rate of coat-color chimerism was detected, and germline transmission could be obtained with few blastocyst injections. In all but one case, highly chimeric mice transmitted to 100% of their offspring. The injection of B6 ES cells into FVB blastocysts produced some chimeric mice. However; the proportion of coat-color chimerism was low, with many more blastocyst injections required to generate chimeras capable of germline transmission. Our data support the use of the coisogenic albino host strain, c2J, for the generation of germline-competent chimeric mice when using B6 ES cells.  相似文献   

4.
Martynova MIu  Isaev DA  Koniukhov BV 《Genetika》2002,38(11):1511-1517
The mutant gene wellhaaring (we) confers the waved coat in mice, which is most pronounced in homozygotes at 10 to 21 days of postnatal development. Abnormal hair growth and structure in the we/we mutant mice results from defective cell differentiation in the inner root sheath of a hair follicle. To localize the site of the we gene action, we obtained ten chimeric mice by aggregation of the early C57BL/6-2we/we and BALB/c embryos. The chimera coat was waved, shaggy, or almost normal depending on the percentage of the mutant component. In the we/we +/+ chimeric animals of the first generation (G1) aged 21 days, both mutant and normal hair phenotypes were observed, which was especially discernible in zigzag hair. Note that none of the chimeras exhibited the alternating patterns of transversely oriented stripes or patches of either mutant or normal hair; i.e., they had a mixed parental hair phenotype. We also did not observe the animals with an intermediate phenotype, which suggests a discontinuous hair formation in chimeras according to the "all or nothing" principle. The data obtained indicate that the dermal papilla cells of a hair follicle are the sites for the we gene action. During the embryonic development, dermal cells are strongly mixed, which accounts for the lack of the clear-cut transverse stripes of either mutant or normal hair. The mutant gene we is probably responsible for a disrupted induction signal from the dermal papilla towards ectodermal cells of a hair follicle.  相似文献   

5.
The murine dilute suppressor gene (dsu) suppresses the coat-color phenotype of three pigment mutations, dilute (d), ashen (ash) and leaden (ln), that each produce adendritic melanocytes. Suppression is due to the ability of dsu to partially restore (ash and ln), or almost completely restore (d), normal melanocyte morphology. While the ash and ln gene products have yet to be identified, the d gene encodes a novel myosin heavy chain (myosin 12), which is speculated to be necessary for the elaboration, maintenance, and/or function of melanocyte cell processes. To begin to discriminate between different models of dus action, we have produced aggregation chimeras between mice homozygous for dsu and mice homozygous for d to determine if dsu acts cell autonomously or cell nonautonomously. In addition, we have further refined the map location of dsu in order to examine a number of possible dsu candidate genes mapping in the region and to provide a genetic basis for the positional cloning of dsu.  相似文献   

6.
Coat colors of four chimeric pigs produced by the microinjection of dissociated blastomeres of (Landrace × Large White) blastocysts to the blastocyst cavity of (Duroc × Duroc) blastocysts (Kashiwazaki et al., 1992) exhibited characteristic horizontal stripe-patterns. We carried out quantitative analysis of those patterns in order to derive information concerning the genetic regulatory mechanisms of the dominant black-eyed white phenotypes in the pig. In the four chimeras, the theoretical mean widths of the single-clone stripe calculated from the estimated widths of minimal recognizable stripe (MRS) (Tachi, 1988) were 2.1 ± 0.1, 2.23 ± 0.15,1.89 ± 0.06, and 1.93 ± 0.28 cm respectively. The estimated number of single-clone stripes in the thoracico-lumbar region of those animals were 42.3, 40.7, 46.3, 44.2, and about twice the mean number of vertebrae in the same region (Duroc, 20 or 21; Large White, 21 or 22). Furthermore, the mean length of thoracico-lumbar vertebrate in two of the chimeric pigs, as measured on X-ray radiographs, was approximately twice the mean single-clone stripe width. It was concluded that the stripe-patterns of the chimeric pigs probably represented the dermatome patterns of epidermis; and in the pig, a single somite was likely to be derived from the clones of two primordial cells, as originally proposed by Gearhart & Mintz (1972) in the mouse. It was suggested, furthermore, that in the Large White→Duroc chimeric pigs, melanocytes that migrated into the region of skin formed by a Large White dermatome could not survive, thus creating a clearly demarcated white stripe. Possible involvement of KL or c-kit in the dominant black-eyed white phenotype of the pig is discussed.  相似文献   

7.
The pigment cells of the skin are derived from melanoblasts which originate in the neural crest. The dorsoventral migration of melanoblasts has been visualized in pigment stripes seen in aggregation chimeras, and the width of these bands has suggested that the entire pigmentation of the coat is derived from a small number of founder cells. We have generated mosaic mice by marking single melanoblasts in utero to gain information on the clonal history of pigment-forming cells. A retroviral vector carrying the human tyrosinase gene was constructed and microinjected into neurulating albino mouse embryos. Albino mice are devoid of pigmentation due to deficiency of tyrosinase. Thus, transduction of the wild-type gene into the otherwise normal melanoblasts should rescue the mutant phenotype, giving rise to patches of pigmentation, which correspond to the area colonized by the mitotic progeny of a marked clone. Mosaic animals derived from the injected embryos indeed showed pigmented bands with a width strikingly similar to the 'standard' stripes seen in aggregation chimeras. These results are consistent with the notion that the unit width bands seen in aggregation chimeras represent the clonal progeny of a single melanoblast and verify Mintz's (1967) conclusion that a few founder melanoblasts give rise to coat pigmentation. The pigment cells of the eye are of dual origin: the melanocytes in choroid and outer layer of the iris are derived from the neural crest and those in the pigment layer of the retina from the neuroepithelium of the optic cup. Marked clones in both lineages were observed in the eyes of many mosaic animals.  相似文献   

8.
This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed.  相似文献   

9.
The autosomal recessive gene hairless (hr) is responsible for the complete hairlessness in mice homozygous for this gene. Hair shedding that begins at the age of 10 days is caused by an abnormal cycle of hair follicle development disturbed at the catagen stage. This results in enhanced programmed cell death (apoptosis) and ultimately leads to the complete hair follicle destruction and shedding of all hairs by the age of three weeks. To study the phenotypic expression of the hr gene in a chimeric organism, we have obtained 12 chimeric mice hr/hr <--> +/+ by means of aggregation of early embryos hr/hr and +/+. In chimeric mice, the hair shedding has begun two days later than in the hr/hr mice. By day 23 of postnatal development, hairless areas were present on the coat of chimeric mice or the latter were completely hairless depending on the percentage of the hr/hr mutant component. In four chimeras with high content of the mutant component (68-76%), the hair shedding process was similar to that in the hr/hr mice, though it was accomplished two days later. In three chimeras with 48-51% of the mutant component, alternating hairless and hair-covered bands were observed. These data suggest that the hr gene acts in epidermal cells of a hair follicle, because epidermal cell clones in embryonic skin migrate in the lateral-ventral direction coherently and without mixing. However, some chimeras displayed a pattern which was not so clear-cut: the band borders were illegible and hairs partly covered the hairless areas. In some chimeras, the uniform thinning of the coat was observed. Analysis of the effects of the hr mutant gene in chimeric mice differing in the ratio between mutant (hr/hr) and normal (+/+) components in tissues suggests that the hr gene acts in the epidermal cells of the hair follicle. The interactions between cells have an essential effect on the mode and degree of the hr gene expression, which leads to distortion of the "ectodermal" coat pattern in chimeras.  相似文献   

10.
ES细胞系统与基因定位致变相结合,进行基因敲除(knockout)已成为研究基因在生物体内功能的重要手段。在ES细胞系的建立、外源基因导入ES细胞、种系嵌合鼠的获得等三个重要环节中,种系嵌合鼠的获得是最关键的一环。由于ES细胞系统技术复杂、实验条件要求很高,尽管国际上已报导了上百例的基因敲除(knockout)实验,但是到目前为止,我国还无一例在国内条件下获得种系嵌合鼠的正式报道。本研究对影响种系嵌合鼠获得的两种因素(饲养层细胞、受体胚胎种类)进行了比较研究,成功地获得了种系嵌合鼠。将HM1细胞在STO或MEF培养层上培养至2133代,注射到不同小鼠的囊胚里,经过恢复培养,移植到假孕的昆明白雌鼠子宫内。由于HM1细胞来源于粟色的的129品系,而胚胎供体鼠的毛色为黑或白色,仔鼠出生一周后即可辨别是否为毛色嵌合鼠。用成年嵌合鼠与其受体胚胎相同品系的小鼠交配,进行种系嵌合鼠鉴定。曾有报导:STO培养层会导致ES细胞发生核变。我们改用MEF培养层,获得嵌合鼠的比率高达48.6%(Table1)。不同小鼠胚胎之间存在差异,C57BL/6J、ICR和昆明白三者提供的受体胚胎产生嵌合鼠的比率分别为71.4%、55%  相似文献   

11.
Several kinds of fusion proteins between human aldolases A and B were prepared by recombinant DNA technology and their enzymic properties were examined. AB chimeras, which have aldolase A at the N-terminal region and aldolase B at the C-terminal region, were scarcely obtained, while BA chimeras were abundant (Kitajima et al., (1990), J. Biol. Chem., 265, 17493-17498). All the BAB chimeras, aldolase A fragments inserted in aldolase B, showed activity assignable to aldolase B type, which imply an essential role of Tyr residue at the C-terminus of aldolase A in the binding of fructose-1,6-bisphosphate (Fru-1,6-P2). BAB chimeras also showed reactivity to effectors such as fructose-2,6-bisphosphate (Fru-2,6-P2) and pyridoxal 5-phosphate (PLP), in a similar manner to aldolase B. BAB108 has a similarity to the BA108 chimera, but acts differently from other BAB chimeras, suggesting that its structure around active site looks like that of aldolase A.  相似文献   

12.
Allogeneic bone marrow chimeras were prepared using reciprocal combinations of AKR and C3H mice. When C3H mice were recipients, the number of thymocytes recoverable from such chimeras (C3H recipient chimeras) was small as compared with that from chimeras for which AKR mice were used as recipients (AKR recipient chimeras) regardless of donor strain. The thymocytes from C3H recipient chimeras showed a profound deficiency in generating proliferative responses to stimulation by anti-CD3 mAb (2C11) or anti-TCR (alpha, beta) mAb (H57-597), even though the expression of CD3 and TCR molecules fell within the same range as that in AKR recipient chimeras. Furthermore, after stimulation with immobilized 2C11, the proportion of IL-2R+ cells in the thymocytes from C3H recipient chimeras was much less than that in AKR recipient chimeras. However, no significant difference in proliferative responses to 2C11 plus PMA, in influx of Ca2+ after stimulation with 2C11 or IL-2 production in response to 2C11 plus PMA or PMA plus A23187 was demonstrated between C3H and AKR recipient chimeras. These findings suggest that the thymocytes from C3H recipient chimeras have a deficiency in the signal transduction system as compared with chimeras for which AKR mice are the recipients. The thymic stromal component involved in this difference in the C3H recipient chimeras is discussed.  相似文献   

13.
The Syk protein tyrosine kinase (PTK) is essential for B, but not T or NK, cell development, although certain T cell subsets (i.e., gamma delta T cells of intestine and skin) appear to be dependent on Syk. In this report, we have re-evaluated the role of Syk in T cell development in hematopoietic chimeras generated by using Syk-deficient fetal liver hematopoietic stem cells (FL-HSC). We found that Syk-/- FL-HSC were vastly inferior to wild-type FL-HSC in reconstituting T cell development in recombinant-activating gene 2 (RAG2)-deficient mice, identifying an unexpected and nonredundant role for Syk in this process. This novel function of Syk in T cell development was mapped to the CD44-CD25+ stage. According to previous reports, development of intestinal gamma delta T cells was arrested in Syk-/- -->RAG2-/- chimeras. In striking contrast, when hosts were the newly established alymphoid RAG2 x common cytokine receptor gamma-chain (RAG2/gamma c) mice, Syk-/- chimeras developed intestinal gamma delta T cells as well as other T cell subsets (including alpha beta T cells, NK1.1+ alpha beta T cells, and splenic and thymic gamma delta T cells). However, all Syk-deficient T cell subsets were reduced in number, reaching about 25-50% of controls. These results attest to the utility of chimeric mice generated in a low competitive hematopoietic environment to evaluate more accurately the impact of lethal mutations on lymphoid development. Furthermore, they suggest that Syk intervenes in early T cell development independently of ZAP-70, and demonstrate that Syk is not essential for the intestinal gamma delta T cell lineage to develop.  相似文献   

14.
Mouse chimeras were made by fusing embryos from the albino BALB/cFo normal skeleton strain producing a slow variant isozyme of glucose phosphate isomerase (GPI) with embryos from the black pigmented SH strain carrying Strong's luxoid gene (symbol: 1st) for skeletal anomalies and producing a fast GPI variant. All chimeras were estimated to bALB/cFo mice to determine the mosaic status of their gonads. In addition, the quantitative proportions of BALB/cFo and SH cells in skin and limb muscles of chimeras were determined by visual estimation of the degree of coat pigmentation and by a serial dilution method applied to electrophoresis and GPI isozyme reaction of limb muscle homogenates. Skeletons of all chimeras and of representative samples of BALB/cFo and SH mice were examined and graded for expression of a number of normal and mutant skeletal characteristics. The most important conclusion of this study is that there was a definite quantitative effect on the development of skeletal characteristics exerted by the relative amount of BALB/ cFo and SH cells present in a chimera such that a structure could vary from normal to entirely mutant, depending on the proportion of each type of cell present.  相似文献   

15.
Avis J  Anderson GB 《Theriogenology》1988,29(2):505-512
Although methods for production of chimeras from early cleavage stages have been well established, little research has been directed toward production of genetically identical chimeric offspring. This study was designed to examine survival of blastocysts produced by aggregation of two halved eight-cell stage embryos from two different mouse strains. Four blastomeres of an eight-cell embryo from a pigmented strain were aggregated with four blastomeres of an eight-cell embryo from a nonpigmented strain. Aggregates were cultured for 48 h and transferred as blastocysts to synchronized recipients of three treatment groups. Viability was determined by examining the number of offspring produced relative to the number of blastocysts transferred. Thirty-nine pups were born from 375 transferred blastocysts (10%), with 16 pups displaying coat-color chimerism. Both nonmanipulated eight-cell embryos cultured for 48 h (P < 0.05) and chimeric blastocysts (P < 0.001) displayed lower embryo survival after transfer to recipients than noncultured, nonmanipulated blastocysts used as controls. Viability of chimeric blastocysts was also lower than that of nonmanipulated embryos cultured for the same period and transferred to the same recipients (P < 0.001). Although posttransfer survival of chimeric blastocysts was low, the birth of morphologically normal offspring demonstrated that production of chimeras from half embryos was compatible with survival. Improvements in this procedure may be useful for production of tenetically identical chimeras from outbred populations, such as those commonly found in domestic livestock species.  相似文献   

16.
The effectiveness of morphometric and meristic characteristics for taxonomic discrimination of Lampetra tridentata and L. richardsoni (Petromyzonidae) during embryological, prolarval, and early larval stages (i.e., age class 1) were examined. Mean chorion diameter increased with time from fertilization to hatch and was significantly greater for L. tridentata than for L. richardsoni at 1, 8, and 15 days postfertilization. Lampetra tridentata larvae had significantly more trunk myomeres than L. richardsoni; however, trunk myomere numbers were highly variable within species and deviated from previously published data. Multivariate examinations of prolarval and larval L. tridentata (7.2-11.0 mm; standard length) and L. richardsoni (6.6-10.8 mm) were conducted based on standard length and truss element lengths established from eight homologous landmarks. Principal components analysis indicated allometric relationships among the morphometric characteristics examined. Changes in body shape were indicated by groupings of morphometric characteristics associated with body regions (e.g., oral hood, branchial region, trunk region, and tail region). Discriminant function analysis using morphometric characteristics was successful in classifying a large proportion (> 94.7%) of the lampreys sampled.  相似文献   

17.
The mutant genewellhaarig(we) controls the formation of the waved coat in mice, which is most pronounced in homozygotes at 10 to 21 days of postnatal development. Abnormal hair growth and structure in the we/we mutant mice results from defective cell differentiation in the inner root sheath of a hair follicle. To localize the site of the we gene action, we obtained ten chimeric mice by aggregation of the early C57BL/6-2we/we and BALB/c embryos. The chimera coat was waved, shaggy, or almost normal depending on the percentage of the mutant component. In the we/we +/+ chimeric animals of the first generation (G1) aged 21 days, both mutant and normal hair phenotypes were observed, which was especially discernible in zigzag hair. Note that none of the chimeras exhibited the alternating patterns of transversely oriented stripes or patches of either mutant or normal hair; i.e., they had a mixed parental hair phenotype. We also did not observe the animals with an intermediate phenotype, which suggests a discontinuous hair formation in chimeras according to the all or nothing principle. The data obtained indicate that the dermal papilla cells of a hair follicle are the sites for the we gene action. During the embryonic development, dermal cells are strongly mixed, which accounts for the lack of the clear-cut transverse stripes of either mutant or normal hair. The mutant genewe is probably responsible for a disrupted induction signal from the dermal papilla towards ectodermal cells of a hair follicle.  相似文献   

18.
Recent quantitative studies of lurcher chimeric mice have shown that the adult population of cerebellar Purkinje cells can properly be described as a small number of developmental clones of cells. The clones are not seen as patches of contiguous neurons; rather, the cells of any one clone distribute throughout the half-cerebellum that contains them, intermingling extensively with the Purkinje cells of other linkages. Lurcher----wild-type chimeras were analyzed using the cell autonomous Purkinje-cell-lethal mutant, lurcher (+/Lc), as a cell marker. Cell counts from these chimeras revealed that the number of surviving Purkinje cells was always an integral multiple of a unit clone size. These numerical quanta are the evidence for the existence of Purkinje cell developmental clones. When two different inbred strains of mouse were compared (C3H/HeJ and C57BL/6), the resulting clonal analysis showed that the unit clone size (i.e., the number of Purkinje cells in one quantum) is an autonomous property of the lineage and hence, presumably, intrinsic to the progenitor cell that founded it. The current study uses the lurcher chimeric mouse system to examine the cell lineage relationships among the Purkinje cells of a third inbred strain of mouse, AKR/J. The data both support and extend our previous studies. Quantitative analysis reveals that the Purkinje cells of this strain also exist in clones, and the size of these clones is also strain-specific. The number of cells in a single clone (7850), however, is different from either C3H/HeJ (10,200) or C57BL/6 (9200). The fact that this value is so highly polymorphic among the inbred strains of mouse makes it likely that, rather than being a function of different alleles at a single genetic locus, clone size may well represent a multifactorial (but still cell-autonomous) property of developing Purkinje cells. Additional results from a single chimeric animal suggest strongly that clone number (i.e., the number of progenitors selected to found the population) is not strain-specific but results instead from cell:cell interactions during early nervous system formation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号