首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of [35S]sulfate and [3H]glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on [35S]sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on [35S]sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased [3H]thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.  相似文献   

2.
Previously, we showed that fetal bovine cartilage contains a polypeptide that stimulates the incorporation of [35S]sulfate into proteoglycans synthesized by rat and rabbit costal chondrocytes in culture. In this paper, we report that the cartilage-derived factor (CDF) increases not only [35S]sulfate incorporation but also [3H]thymidine incorporation into rabbit chondrocytes in monolayer culture. The dose-response curve of CDF stimulation of DNA synthesis was similar in profile to that of CDF stimulation of proteoglycan synthesis. In addition, CDF markedly enhanced [3H]uridine incorporation into rabbit chondrocytes and significantly enhanced [3H]serine incorporation into total protein. These findings indicate that fetal bovine cartilage contains a factor that shows somatomedin-like activity in monolayer cultures of rabbit chondrocytes.  相似文献   

3.
The synthesis of collagen and proteoglycans by cultured chondrocytes, as measured by the incorporation of L-[3H]proline into hydroxyproline and [3H]acetate into glycosaminoglycans, was shown to be depressed by 58% and 39%, respectively, by the addition of exogenous proteoglycan at a concentration of 10 mg/ml growth media. The incorporation of L-[3H]proline into acid-insoluble protein remained unaltered in the presence of the proteoglycan. It was concluded that the effect was depressing the activity on the enzymatic steps, associated with the endoplasmic reticulum, which are responsible for the post-translational modification of collagen and proteoglycan.  相似文献   

4.
Insulin-like growth factor I (IGF-I) is anabolic for chondrocytes and is thought to be important in regulating such normal cartilaginous tissues as the epiphyseal growth plate. In the present studies, we have investigated the role of IGF-I in the regulation of neoplastic cartilage. Chondrocytes cultured from a transplantable rat chondrosarcoma were analyzed for responsiveness to IGF-I with respect to DNA and glycosaminoglycan synthesis as determined by labeling with radioactive thymidine and sulfate, respectively. Stimulation of [3H]thymidine and [35S]sulfate incorporation by IGF-I was two to four times that in serum-free controls, with half-maximal stimulation at 1 × 10-9M. The efficacy of IGF-I was approximately one-half of that of serum in stimulating [3H]thymidine incorporation and was comparable to that of serum for [35S]sulfate incorporation. When Swarm rat chondrosarcoma chondrocytes were cultured in the presence of IGF-I and exposed to graded concentrations of anti-IGF-I antibody, [3H]thymidine incorporation and [35S]sulfate incorporation were attenuated in a dose-dependent fashion to 29 and 25% of antibody-free controls, respectively. Nonspecific antibody not raised against IGF-I was not inhibitory. These observations suggest that the majority of IGF-I action on these cells is susceptible to immunoinhibition. To estimate the contribution of IGF-I to the regulation of these cells by serum, Swarm rat chondrosarcoma chondrocytes were cultured with graded concentrations of either calf serum or fetal calf serum in the presence of anti-IGF-I antibody, nonspecific antibody, or no other additives. Specific antibody attenuated the effect of calf serum on both [3H]thymidine and [35S]sulfate incorporation with overall inhibition of 52% (P < 0.01) and 48% (P < 0.001), respectively. Nonspecific antibody superimposed small, variably stimulatory or inhibitory effects on those of calf serum. When chondrosarcoma chondrocytes were incubated with fetal calf serum, anti-IGF-I antibody exerted a minimal inhibitory effect, reducing both [3H]thymidine and [35S]sulfate incorporation by less than 25%. The immunoinhibition of both pre- and postnatal serum could be overcome in a dose-dependent fashion by increasing serum concentrations. These results suggest that the factors influencing Swarm rat chondrosarcoma chondrocytes may be developmentally regulated and that the contribution of IGF-I to the action of serum increases between fetal and postnatal life. These data support the hypothesis that chondrosarcoma is a somatomedin-responsive neoplasm and suggest that this tumor may be susceptible to interventions directed toward mechanisms that block insulin-like growth factor action.  相似文献   

5.
The synthesis of collagen and proteoglycans by cultured chondrocytes, as measured by the incorporation of L-[3H]proline into hydroxyproline and [3H]acetate into glycosaminoglycans, was shown to be depressed by 59% and 39%, respectively, by the addition of exogenous proteoglycan at a concetration of 10 mg/ml growth media. The incorporation of L-[3H]proline into acid-in-soluble protein remained unaltered in the presence of the proteoglycan. It was concluded that the effect was depressing the activity of the enzymatic steps, associated with the endoplasmic reticulum, which are responsible for the post-traslational modification of collagen and proteoglycan.  相似文献   

6.
Phospholipase A2 (PLA2) is pivotal in the rapid membrane-mediated actions of 1,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Microarray analysis indicated that PLA2 activating protein (PLAA) mRNA is upregulated 6-fold before rat growth plate cells exhibit 1alpha,25(OH)2D3-dependent protein kinase C (PKC) increases, suggesting that it plays an important role in 1alpha,25(OH)2D3's mechanism of action. PLAA mRNA was confirmed in 1alpha,25(OH)2D3-responsive growth zone (prehypertrophic and upper hypertrophic cell zones) chondrocytes by RT-PCR and Northern blot in vitro and by in situ hybridization in vivo. PLAA protein was shown by Western blot and immunohistochemistry. PLAAs role in 1alpha,25(OH)2D3 signaling was evaluated in growth zone cell cultures using PLAA peptide. Arachidonic acid release was increased as was PLA2-specific activity in plasma membranes and matrix vesicles. PKCalpha, but not PKCbeta, PKCepsilon, or PKCzeta, was increased. PLAAs effect was comparable to that of 1alpha,25(OH)2D3 and was additive with 1alpha,25(OH)2D3. PLA2 inhibitors quinacrine and AACOCF3, and cyclooxygenase inhibitor indomethacin blocked the effect of PLAA peptide on PKC, indicating arachidonic acid and its metabolites were involved. This was confirmed using exogenous arachidonic acid. Prostaglandin acted via EP1 based on inhibition by SC19220 and not via EP2 since AH6809 had no effect. Like 1alpha,25(OH)2D3, PLAA peptide also increased activity of phospholipase C-specific activity via beta-1 and beta-3 isoforms, but not delta-1 or gamma-1; the effect of PLAA was via lysophospholipid but not via arachidonic acid. PLAA peptide decreased [3H]-thymidine incorporation to 50% of the decrease caused by 1alpha,25(OH)2D3. In contrast, PLAA peptide increased alkaline phosphatase-specific activity and proteoglycan production in a manner similar to 1alpha,25(OH)2D3. This indicates that PLAA is a specific activator of PLA2 in growth plate chondrocytes, and suggests that it mediates the membrane effect of 1alpha,25(OH)2D3, thereby modulating physiological response.  相似文献   

7.
We have earlier demonstrated that human growth hormone stimulates DNA synthesis and proteoglycan production in cultured chondrocytes. The present study is concerned with the effects of somatostatin and other neuropeptides on cell proliferation by cultured rat rib growth plate chondrocytes. Chondrocytes were isolated from the growth plates by collagenase digestion and cultured as monolayers in multiwell plates. The cells were allowed to attach overnight and subsequently incubated for 24 h under serum-free conditions to establish growth arrest. Somatostatin and other peptides were then added and the cultures were incubated for 18 h. Finally, the cultures were labelled for 6 h with tritiated thymidine in the presence of peptide. For screening purposes, the effect on DNA-synthesis was assayed as incorporation of [3H]-thymidine into acid-insoluble material. For a more exact estimate, parallel cultures were prepared for autoradiography and the fraction of labelled nuclei was determined by counting. Among the peptides we tested (somatostatin, GRF, TRH, SP, mENK, PHI, VIP, hCT) only somatostatin had any discernible effect on DNA synthesis, with an apparently optimal effect at 10 fM. This concentration is well within the range found in various tissues in vivo and suggests a physiological role for somatostatin in chondrocyte growth regulation. Further experiments are required, however, to clarify by which mechanism somatostatin influences the cells and whether the peptide interacts with other growth factors such as the IGFs.  相似文献   

8.
Previous studies have demonstrated that passage in monolayer detrimentally affects the response of articular chondrocytes to the application of dynamic compression. Transforming growth factor beta (TGFbeta) is known to regulate metabolic processes in articular cartilage and can enhance the re-expression of a chondrocytic phenotype following monolayer expansion. The current study tests the hypothesis that TGFbeta also modulates the response of monolayer-expanded human chondrocytes to the application of dynamic compression, via an integrin-mediated mechanotransduction process. The data presented demonstrate that TGFbeta3 enhanced 35SO4 and [3H]thymidine incorporation and inhibited nitrite release after 48 h of culture when compared to unsupplemented constructs. Dynamic compression also enhanced 35SO4 and [3H]thymidine incorporation and inhibited nitrite release in the presence of TGFbeta3. By contrast, dynamic compression did not alter these parameters in the absence of the growth factor. The addition of the peptide, GRGDSP, which acts as a competitive ligand for the alpha5beta1 integrin, reversed the compression-induced stimulation of 35SO4 incorporation, [3H]thymidine incorporation, and suppression of nitrite release. No effect was observed when the control peptide, GRADSP, was used. The current data clearly demonstrate that the dynamic compression-induced changes observed in cell metabolism for human monolayer-expanded chondrocytes were dependent on the presence of TGFbeta3 and are integrin-mediated.  相似文献   

9.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

10.
A synthetic peptide representing the receptor-binding domain of human thrombin (TP508, also known as Chrysalin) accelerates fracture repair in rats via endochondral ossification and promotes repair of rabbit cartilage defects. To understand how this peptide might stimulate cartilage and bone formation, we employed an established in vitro model of growth plate cartilage regulation. Rat costochondral cartilage resting zone and growth zone chondrocytes were treated with 0, 0.07, 0.7, or 7 microg/ml TP508 or a scrambled peptide, TP508-SP. Proliferation ([3H]-thymidine incorporation) was examined in pre-confluent cultures; effects on cell number, alkaline phosphatase activity, [35S]-sulfate incorporation, and responsiveness to vitamin D metabolites were tested using confluent cultures. TP508 did not affect proliferation of resting zone cells but it caused a dose-dependent increase in cell number and DNA synthesis of growth zone cells. Alkaline phosphatase specific activity of resting zone cells was reduced by TP508, whereas [35S]-sulfate incorporation was increased. Neither parameter was affected in growth zone cell cultures. TP508 treatment for 24 h did not induce resting zone cells to respond to 1alpha,25(OH)2D3, either with respect to alkaline phosphatase activity or proteoglycan production. In contrast, TP508 treatment reduced the stimulatory effect of 24R,25(OH)2D3 on alkaline phosphatase but it did not alter the stimulatory effect of 24R,25(OH)2D3 on [35S]-sulfate incorporation. In cultures treated for 48, 72, or 140 h with TP508, 1alpha,25(OH)2D3 restored alkaline phosphatase activity to control levels but did not stimulate activity over levels observed in untreated control cultures. The stimulatory effect of TP508 on [35S]-sulfate incorporation was evident up to 48 h post-confluence but at later time points, proteoglycan production was comparable to that seen in control cultures, control cultures challenged with 1alpha,25(OH)2D3, and cultures treated with TP508 followed by 1alpha,25(OH)2D3. TP508-SP had no effect on any of the parameters tested. These results indicate that TP508 exerts maturation specific effects on chondrocytes in the endochondral lineage, promoting cartilage extracellular matrix synthesis over endochondral differentiation in resting zone cells and proliferation over differentiation of growth zone cells.  相似文献   

11.
The effect of vanadate on proteoglycan synthesis by cultured rabbit costal chondrocytes was examined. Rabbit chondrocytes were seeded at low densities and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of 4 microM vanadate to the culture medium induced a morphologic differentiation of the fibroblastic cells to spherical chondrocytes, and increased by two- to threefold incorporation of [35S]sulfate and [3H]glucosamine into large, chondroitin sulfate proteoglycans. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, in that chemical analyses showed increases in the accumulation of macromolecules containing hexuronic acid and hexosamine in vanadate-maintained cultures. However, vanadate had only a marginal effect on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant material. These results provide evidence that vanadate selectively stimulates the synthesis of proteoglycans characteristically found in cartilage by rabbit costal chondrocyte cultures.  相似文献   

12.
We recently purified luteinizing hormone (LH)-isoforms with renotropic activity from ovine pituitaries based on the stimulation of [3H] thymidine incorporation into renal DNA of castrated-hypophysectomized rats. In this study, we examined the hormonal interactions between ovine growth hormone (GH) and this LH-isoform in renal DNA synthesis. A single injection of LH-isoform (40 micrograms) significantly increased [3H] thymidine incorporation, but an injection of GH (200 micrograms) did not, during experimental periods of up to 26 hours. Repetitive ovine GH treatment (5 days) did not change basal [3H] thymidine incorporation, either, although its biological activity was evidenced by an increase in insulin-like growth factor-I (IGF-I). Stimulated [3H] thymidine incorporation by LH-isoform (100 micrograms) was significantly suppressed by an injection of GH (200 micrograms) and was, to a greater extent, by repetitive treatment with GH (200 micrograms/day, for 3 or 5 consecutive days). These results demonstrated one example of the effect of complex hormonal interactions on kidney growth.  相似文献   

13.
Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3H-labeled proteoglycan. Furthermore, EGF stimulates [3H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis.  相似文献   

14.
Using pulse labeling techniques with [3H]thymidine or [3H]cytidine, combined with DNA fiber autoradiography, we have investigated the direction and rate of DNA chain growth in mammalian cells. In general, chain elongation proceeds bidirectionally from the common origin of pairs of adjacent replication sections. This type of replication is noted whether the DNA is labeled first with [3H]thymidine of high specific activity, followed by [3H]thymidine of low specific activity or the sequence is reversed. Approximately one-fifth of the growing points have unique origins and in these replication units, chain growth proceeds in one direction only. Fluorodeoxyuridine and hydroxyurea both inhibit DNA chain propagation. Fluorodeoxyuridine exerts its effect on chain growth within 15–23 min, while the effect of hydroxyurea is evident within 15 min under conditions where the endogenous thymidine pool has been depleted by prior treatment with fluorodeoxyuridine. Puromycin has no effect on chain growth until 60 min after addition of the compound, even though thymidine incorporation is more than 50% reduced within 15 min. After 2 h of treatment with puromycin, the rate of chain growth is reduced by 50%, whereas thymidine incorporation is reduced by 75%. Cycloheximide reduces the rates of DNA chain growth and thymidine incorporation 50% within 15 min, and, on prolonged treatment, the decrease in rate of chain growth generally parallels the reduction in thymidine incorporation.  相似文献   

15.
OBJECTIVE: To monitor liver regeneration following partial hepatectomy, liver cell proliferation can be measured by assaying in vivo [3H]thymidine incorporation into liver cell DNA. We hypothesized that [3H]thymidine incorporation into whole liver tissue parallels [3H]thymidine incorporation into liver cell DNA, both in high proliferating and low proliferating liver. STUDY DESIGN: Liver cell proliferation in rats after partial hepatectomy or a sham operation was studied by measuring incorporation of [3H]thymidine into various fractions of liver tissue on days 1, 2, 3, 4 and 10 after surgery. RESULTS: [3H]thymidine incorporation into whole liver tissue and in the protein fraction correlated well with DNA-specific [3H]thymidine incorporation into regenerating (r > .80, P < .0001) and nonregenerating liver (r > .69, P < .005). [3H]thymidine incorporation into DNA was < 5% of the total amount of administered [3H]thymidine in both sham-operated and hepatectomized rats. Significant differences in [3H]thymidine incorporation into partially hepatectomized livers as compared to sham-operated rat livers were found on days 1 and 2 (whole liver tissue and protein fraction) or day 1 (DNA) after surgery. CONCLUSION: [3H]thymidine incorporation into whole liver tissue is a simple technique that can be used for the study of liver cell proliferation after partial hepatectomy in rats.  相似文献   

16.
The validity of using the incorporation of [3H]thymidine into DNA as an indicator of epidermal keratinocyte proliferation in vitro has been investigated. Other parameters of cell proliferation, direct count of cell number and measurement of DNA content, consistently fail to correlate with changes in [3H]thymidine incorporation into DNA in primary and first passage cultures of rabbit and human epidermal keratinocytes. Maximum incorporation of [3H]thymidine precedes the active growth period by three days. Incorporation declines markedly during the proliferative period. Thymidine kinase activity decreases during the proliferative growth phase. Incorporation of another pyrimidine nucleotide precursor, [14C]aspartic acid, suggests that in epidermal keratinocytes in vitro the extent of utilization of the salvage and the de novo pathways may be inversely related. In such cases [3H]thymidine incorporation into TCA precipitable material fails to reflect accurately cell proliferation.  相似文献   

17.
The stimulation of DNA synthesis in primary cell cultures of chicken chondrocytes by parathyroid hormone was studied by assaying [3H]thymidine incorporation into DNA. Optimal assay conditions were determined by varying cell age, plating density, and incubation time. Under these conditions DNA synthesis was significantly stimulated by parathyroid hormone (PTH) and some of its fragments: cells treated with human (h)PTH(1-84), bovine (b)PTH(1-34) and [Nle8,18,Tyr34]bPTH(3-34)amide and hPTH(13-34) displayed 2.6-fold enhanced [3H]thymidine incorporation in a dose-dependent manner. The fragment hPTH(28-48) led to a similar stimulation, whereas [Tyr43]hPTH(43-68) and [Tyr52,Asp76]hPTH(52-84) had no effect. Using a series of synthetic hPTH peptides covering the central region of the hormone molecule (residues 25-47), we could delimitate further this putative mitogenic functional domain to a core region between amino acid residues 30 and 34. The effect of PTH on [3H]thymidine incorporation could not be mimicked by forskolin, indicating that the corresponding signal is not mediated by cAMP. It is, however, inhibited by EGTA and cannot be provoked in the absence of calcium ions in the medium. Therefore, the results presented indicate a hitherto unidentified functional domain of PTH in the central part of the molecule which exerts its mitogenic effect on chondrocytes in a cAMP-independent manner but seems to involve calcium ions for signal transduction.  相似文献   

18.
Summary Cultured cells from the bovine endosalpinx were used to evaluate effects of estradiol-17β, progesterone, epidermal growth factor, and insulinlike growth factors I and II on [3H]thymidine incorporation. Cells were treated with hormones and growth factors when approximately 50% confluent. After 24 h, DNA synthesis was quantified by pulsing cells with [3H]thymidine for 12 h and determining uptake into DNA. Cells prepared by mechanical dispersal incorporated more [3H]thymidine than cells dispersed with collagenase. However, hormonal responses were the same for both types of cells. As compared to plastic, cells on a Matrigel substratum exhibited lower incorporation of [3H]thymidine and were unresponsive to hormones. Estradiol-17β increased [3H]thymidine incorporation slightly at 10−10 mol/liter and higher. Epidermal growth factor, insulinlike growth factor-I, and insulinlike growth factor-II also stimulated [3H]thymidine incorporation. Effects of insulinlike growth factor-I were greater for cells treated with estradiol-17β. In the absence of estradiol, progesterone inhibited [3H]thymidine incorporation at 1, 10, and 100 ng/ml. When estradiol-17β was present, progesterone stimulated [3H]thymidine incorporation at 1 ng/ml and reduced incorporation at 100 ng/ml. In conclusion, [3H]thymidine incorporation by cultured oviductal endosalpingeal cells can be regulated by ovarian steroids and growth factors. These molecules may represent signals through which the ovary, embryo, and oviduct regulate oviductal growth. Work conducted while on a sabbatical leave supported by the Deutsche Forschungsgemeinschaft.  相似文献   

19.
Rates of nucleic acid synthesis have been used to examine microbiol growth in natural waters. These rates are calculated from the incorporation of [3H]adenine and [3H]thymidine for RNA and DNA syntheses, respectively. Several additional biochemical parameters must be measured or taken from the literature to estimate growth rates from the incorporation of the tritiated compounds. We propose a simple method of estimating a conversion factor which obviates measuring these biochemical parameters. The change in bacterial abundance and incorporation rates of [3H]thymidine was measured in samples from three environments. The incorporation of exogenous [3H]thymidine was closely coupled with growth and cell division as estimated from the increase in bacterial biomass. Analysis of the changes in incorporation rates and initial bacterial abundance yielded a conversion factor for calculating bacterial production rates from incorporation rates. Furthermore, the growth rate of only those bacteria incorporating the compound can be estimated. The data analysis and experimental design can be used to estimate the proportion of nondividing cells and to examine changes in cell volumes.  相似文献   

20.
Bacterioplankton abundance, [H]thymidine incorporation, CO(2) uptake in the dark, and fractionated primary production were measured on several occasions between June and August 1982 in eutrophic Lake Norrviken, Sweden. Bacterioplankton abundance and carbon biomass ranged from 0.5 x 10 to 2.4 x 10 cells liter and 7 to 47 mug of C liter, respectively. The average bacterial cell volume was 0.185 mum. [H]thymidine incorporation into cold-trichloroacetic acid-insoluble material ranged from 12 x 10 to 200 x 10 mol liter h. Bacterial carbon production rates were estimated to be 0.2 to 7.1 mug of C liter h. Bacterial production estimates from [H]thymidine incorporation and CO(2) uptake in the dark agreed when activity was high but diverged when activity was low and when blue-green algae (cyanobacteria) dominated the phytoplankton. Size fractionation indicated negligible uptake of [H]thymidine in the >3-mum fraction during a chrysophycean bloom in early June. We found that >50% of the H activity was in the >3-mum fraction in late August; this phenomenon was most likely due to Microcystis spp., their associated bacteria, or both. Over 60% of the CO(2) uptake in the dark was attributed to algae on each sampling occasion. Algal exudate was an important carbon source for planktonic bacteria. Bacterial production was roughly 50% of primary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号