共查询到20条相似文献,搜索用时 15 毫秒
1.
Scheid S Spang R 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2004,1(3):98-108
Screening for differential gene expression in microarray studies leads to difficult large-scale multiple testing problems. The local false discovery rate is a statistical concept for quantifying uncertainty in multiple testing. We introduce a novel estimator for the local false discovery rate that is based on an algorithm which splits all genes into two groups, representing induced and noninduced genes, respectively. Starting from the full set of genes, we successively exclude genes until the gene-wise p-values of the remaining genes look like a typical sample from a uniform distribution. In comparison to other methods, our algorithm performs compatibly in detecting the shape of the local false discovery rate and has a smaller bias with respect to estimating the overall percentage of noninduced genes. Our algorithm is implemented in the Bioconductor compatible R package TWILIGHT version 1.0.1, which is available from http://compdiag.molgen.mpg.de/software or from the Bioconductor project at http://www.bioconductor.org. 相似文献
2.
Aharoni E Neuvirth H Rosset S 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2011,8(5):1431-1437
The common scenario in computational biology in which a community of researchers conduct multiple statistical tests on one shared database gives rise to the multiple hypothesis testing problem. Conventional procedures for solving this problem control the probability of false discovery by sacrificing some of the power of the tests. We suggest a scheme for controlling false discovery without any power loss by adding new samples for each use of the database and charging the user with the expenses. The crux of the scheme is a carefully crafted pricing system that fairly prices different user requests based on their demands while keeping the probability of false discovery bounded. We demonstrate this idea in the context of HIV treatment research, where multiple researchers conduct tests on a repository of HIV samples. 相似文献
3.
Jorge Duitama Juan Camilo Quintero Daniel Felipe Cruz Constanza Quintero Georg Hubmann Maria R. Foulquié-Moreno Kevin J. Verstrepen Johan M. Thevelein Joe Tohme 《Nucleic acids research》2014,42(6):e44
Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still require important investments in highly skilled personnel. Developing accurate, efficient and user-friendly software packages for HTS data analysis will lead to a more rapid discovery of genomic elements relevant to medical, agricultural and industrial applications. We therefore developed Next-Generation Sequencing Eclipse Plug-in (NGSEP), a new software tool for integrated, efficient and user-friendly detection of single nucleotide variants (SNVs), indels and copy number variants (CNVs). NGSEP includes modules for read alignment, sorting, merging, functional annotation of variants, filtering and quality statistics. Analysis of sequencing experiments in yeast, rice and human samples shows that NGSEP has superior accuracy and efficiency, compared with currently available packages for variants detection. We also show that only a comprehensive and accurate identification of repeat regions and CNVs allows researchers to properly separate SNVs from differences between copies of repeat elements. We expect that NGSEP will become a strong support tool to empower the analysis of sequencing data in a wide range of research projects on different species. 相似文献
4.
A simple procedure for estimating the false discovery rate 总被引:1,自引:0,他引:1
MOTIVATION: The most used criterion in microarray data analysis is nowadays the false discovery rate (FDR). In the framework of estimating procedures based on the marginal distribution of the P-values without any assumption on gene expression changes, estimators of the FDR are necessarily conservatively biased. Indeed, only an upper bound estimate can be obtained for the key quantity pi0, which is the probability for a gene to be unmodified. In this paper, we propose a novel family of estimators for pi0 that allows the calculation of FDR. RESULTS: The very simple method for estimating pi0 called LBE (Location Based Estimator) is presented together with results on its variability. Simulation results indicate that the proposed estimator performs well in finite sample and has the best mean square error in most of the cases as compared with the procedures QVALUE, BUM and SPLOSH. The different procedures are then applied to real datasets. AVAILABILITY: The R function LBE is available at http://ifr69.vjf.inserm.fr/lbe CONTACT: broet@vjf.inserm.fr. 相似文献
5.
Simultaneous discovery and testing of deletions for disease association in SNP genotyping studies 总被引:1,自引:0,他引:1
下载免费PDF全文

Copy-number variation (CNV), and deletions in particular, can play a crucial, causative role in rare disorders. The extent to which CNV contributes to common, complex disease etiology, however, is largely unknown. Current techniques to detect CNV are relatively expensive and time consuming, making it difficult to conduct the necessary large-scale genetic studies. SNP genotyping technologies, on the other hand, are relatively cheap, thereby facilitating large study designs. We have developed a computational tool capable of harnessing the information in SNP genotype data to detect deletions. Our approach not only detects deletions with high power but also returns accurate estimates of both the population frequency and the transmission frequency. This tool, therefore, lends itself to the discovery of deletions in large familial SNP genotype data sets and to simultaneous testing of the discovered deletion for association, with the use of both frequency-based and transmission/disequilibrium test-based designs. We demonstrate the effectiveness of our computer program (microdel), available for download at no cost, with both simulated and real data. Here, we report 693 deletions in the HapMap 16c collection, with each deletion assigned a population frequency. 相似文献
6.
A variety of methods have been described in the literature for assigning statistical significance to peptides identified via tandem mass spectrometry. Here, we explain how two types of scores, the q-value and the posterior error probability, are related and complementary to one another. 相似文献
7.
Background
Proteomic protein identification results need to be compared across laboratories and platforms, and thus a reliable method is needed to estimate false discovery rates. The target-decoy strategy is a platform-independent and thus a prime candidate for standardized reporting of data. In its current usage based on global population parameters, the method does not utilize individual peptide scores optimally. 相似文献8.
fdrtool: a versatile R package for estimating local and tail area-based false discovery rates 总被引:1,自引:0,他引:1
Strimmer K 《Bioinformatics (Oxford, England)》2008,24(12):1461-1462
False discovery rate (FDR) methodologies are essential in the study of high-dimensional genomic and proteomic data. The R package 'fdrtool' facilitates such analyses by offering a comprehensive set of procedures for FDR estimation. Its distinctive features include: (i) many different types of test statistics are allowed as input data, such as P-values, z-scores, correlations and t-scores; (ii) simultaneously, both local FDR and tail area-based FDR values are estimated for all test statistics and (iii) empirical null models are fit where possible, thereby taking account of potential over- or underdispersion of the theoretical null. In addition, 'fdrtool' provides readily interpretable graphical output, and can be applied to very large scale (in the order of millions of hypotheses) multiple testing problems. Consequently, 'fdrtool' implements a flexible FDR estimation scheme that is unified across different test statistics and variants of FDR. AVAILABILITY: The program is freely available from the Comprehensive R Archive Network (http://cran.r-project.org/) under the terms of the GNU General Public License (version 3 or later). CONTACT: strimmer@uni-leipzig.de. 相似文献
9.
The search for pairs (dyads) of related individuals in large databases of DNA-profiles has become an increasingly important inference tool in ecology. However, the many, partly dependent, pairwise comparisons introduce statistical issues. We show that the false discovery rate (FDR) procedure is well suited to control for the proportion of false positives, i.e. dyads consisting of unrelated individuals, which under normal circumstances would have been labelled as related individuals. We verify the behaviour of the standard FDR procedure by simulation, demonstrating that the FDR procedure works satisfactory in spite of the many dependent pairwise comparisons involved in an exhaustive database screening. A computer program that implements this method is available online. In addition, we propose to implement a second stage in the procedure, in which additional independent genetic markers are used to identify the false positives. We demonstrate the application of the approach in an analysis of a DNA database consisting of 3300 individual minke whales (Balaenoptera acutorostrata) each typed at ten microsatellite loci. Applying the standard procedure with an FDR of 50% led to the identification of 74 putative dyads of 1st- or 2nd-order relatives. However, introducing the second step, which involved additional genotypes at 15 microsatellite loci, revealed that only 21 of the putative dyads can be claimed with high certainty to be true dyads. 相似文献
10.
Background
DNA barcodes are short unique sequences used to label DNA or RNA-derived samples in multiplexed deep sequencing experiments. During the demultiplexing step, barcodes must be detected and their position identified. In some cases (e.g., with PacBio SMRT), the position of the barcode and DNA context is not well defined. Many reads start inside the genomic insert so that adjacent primers might be missed. The matter is further complicated by coincidental similarities between barcode sequences and reference DNA. Therefore, a robust strategy is required in order to detect barcoded reads and avoid a large number of false positives or negatives.For mass inference problems such as this one, false discovery rate (FDR) methods are powerful and balanced solutions. Since existing FDR methods cannot be applied to this particular problem, we present an adapted FDR method that is suitable for the detection of barcoded reads as well as suggest possible improvements.Results
In our analysis, barcode sequences showed high rates of coincidental similarities with the Mus musculus reference DNA. This problem became more acute when the length of the barcode sequence decreased and the number of barcodes in the set increased. The method presented in this paper controls the tail area-based false discovery rate to distinguish between barcoded and unbarcoded reads. This method helps to establish the highest acceptable minimal distance between reads and barcode sequences. In a proof of concept experiment we correctly detected barcodes in 83% of the reads with a precision of 89%. Sensitivity improved to 99% at 99% precision when the adjacent primer sequence was incorporated in the analysis. The analysis was further improved using a paired end strategy. Following an analysis of the data for sequence variants induced in the Atp1a1 gene of C57BL/6 murine melanocytes by ultraviolet light and conferring resistance to ouabain, we found no evidence of cross-contamination of DNA material between samples.Conclusion
Our method offers a proper quantitative treatment of the problem of detecting barcoded reads in a noisy sequencing environment. It is based on the false discovery rate statistics that allows a proper trade-off between sensitivity and precision to be chosen.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2105-15-264) contains supplementary material, which is available to authorized users. 相似文献11.
Background
Many studies have provided algorithms or methods to assess a statistical significance in quantitative proteomics when multiple replicates for a protein sample and a LC/MS analysis are available. But, confidence is still lacking in using datasets for a biological interpretation without protein sample replicates. Although a fold-change is a conventional threshold that can be used when there are no sample replicates, it does not provide an assessment of statistical significance such as a false discovery rate (FDR) which is an important indicator of the reliability to identify differentially expressed proteins. In this work, we investigate whether differentially expressed proteins can be detected with a statistical significance from a pair of unlabeled protein samples without replicates and with only duplicate LC/MS injections per sample. A FDR is used to gauge the statistical significance of the differentially expressed proteins. 相似文献12.
A mixture model for estimating the local false discovery rate in DNA microarray analysis 总被引:3,自引:0,他引:3
MOTIVATION: Statistical methods based on controlling the false discovery rate (FDR) or positive false discovery rate (pFDR) are now well established in identifying differentially expressed genes in DNA microarray. Several authors have recently raised the important issue that FDR or pFDR may give misleading inference when specific genes are of interest because they average the genes under consideration with genes that show stronger evidence for differential expression. The paper proposes a flexible and robust mixture model for estimating the local FDR which quantifies how plausible each specific gene expresses differentially. RESULTS: We develop a special mixture model tailored to multiple testing by requiring the P-value distribution for the differentially expressed genes to be stochastically smaller than the P-value distribution for the non-differentially expressed genes. A smoothing mechanism is built in. The proposed model gives robust estimation of local FDR for any reasonable underlying P-value distributions. It also provides a single framework for estimating the proportion of differentially expressed genes, pFDR, negative predictive values, sensitivity and specificity. A cervical cancer study shows that the local FDR gives more specific and relevant quantification of the evidence for differential expression that can be substantially different from pFDR. AVAILABILITY: An R function implementing the proposed model is available at http://www.geocities.com/jg_liao/software 相似文献
13.
The relevance of libraries of annotated MS/MS spectra is growing with the amount of proteomic data generated in high-throughput experiments. These reference libraries provide a fast and accurate way to identify newly acquired MS/MS spectra. In the context of multiple hypotheses testing, the control of the number of false-positive identifications expected in the final result list by means of the calculation of the false discovery rate (FDR). In a classical sequence search where experimental MS/MS spectra are compared with the theoretical peptide spectra calculated from a sequence database, the FDR is estimated by searching randomized or decoy sequence databases. Despite on-going discussion on how exactly the FDR has to be calculated, this method is widely accepted in the proteomic community. Recently, similar approaches to control the FDR of spectrum library searches were discussed. We present in this paper a detailed analysis of the similarity between spectra of distinct peptides to set the basis of our own solution for decoy library creation (DeLiberator). It differs from the previously published results in some key points, mainly in implementing new methods that prevent decoy spectra from being too similar to the original library spectra while keeping important features of real MS/MS spectra. Using different proteomic data sets and library creation methods, we evaluate our approach and compare it with alternative methods. 相似文献
14.
A multipoint method for detecting genotyping errors and mutations in sibling-pair linkage data 总被引:8,自引:0,他引:8
下载免费PDF全文

The identification of genes contributing to complex diseases and quantitative traits requires genetic data of high fidelity, because undetected errors and mutations can profoundly affect linkage information. The recent emphasis on the use of the sibling-pair design eliminates or decreases the likelihood of detection of genotyping errors and marker mutations through apparent Mendelian incompatibilities or close double recombinants. In this article, we describe a hidden Markov method for detecting genotyping errors and mutations in multilocus linkage data. Specifically, we calculate the posterior probability of genotyping error or mutation for each sibling-pair-marker combination, conditional on all marker data and an assumed genotype-error rate. The method is designed for use with sibling-pair data when parental genotypes are unavailable. Through Monte Carlo simulation, we explore the effects of map density, marker-allele frequencies, marker position, and genotype-error rate on the accuracy of our error-detection method. In addition, we examine the impact of genotyping errors and error detection and correction on multipoint linkage information. We illustrate that even moderate error rates can result in substantial loss of linkage information, given efforts to fine-map a putative disease locus. Although simulations suggest that our method detects =50% of genotyping errors, it generally flags those errors that have the largest impact on linkage results. For high-resolution genetic maps, removal of the errors identified by our method restores most or nearly all the lost linkage information and can be accomplished without generating false evidence for linkage by removing incorrectly identified errors. 相似文献
15.
MOTIVATION: The false discovery rate (FDR) has been widely adopted to address the multiple comparisons issue in high-throughput experiments such as microarray gene-expression studies. However, while the FDR is quite useful as an approach to limit false discoveries within a single experiment, like other multiple comparison corrections it may be an inappropriate way to compare results across experiments. This article uses several examples based on gene-expression data to demonstrate the potential misinterpretations that can arise from using FDR to compare across experiments. Researchers should be aware of these pitfalls and wary of using FDR to compare experimental results. FDR should be augmented with other measures such as p-values and expression ratios. It is worth including standard error and variance information for meta-analyses and, if possible, the raw data for re-analyses. This is especially important for high-throughput studies because data are often re-used for different objectives, including comparing common elements across many experiments. No single error rate or data summary may be appropriate for all of the different objectives. 相似文献
16.
17.
A Bayesian measure of the probability of false discovery in genetic epidemiology studies 总被引:3,自引:0,他引:3
下载免费PDF全文

Wakefield J 《American journal of human genetics》2007,81(2):208-227
In light of the vast amounts of genomic data that are now being generated, we propose a new measure, the Bayesian false-discovery probability (BFDP), for assessing the noteworthiness of an observed association. BFDP shares the ease of calculation of the recently proposed false-positive report probability (FPRP) but uses more information, has a noteworthy threshold defined naturally in terms of the costs of false discovery and nondiscovery, and has a sound methodological foundation. In addition, in a multiple-testing situation, it is straightforward to estimate the expected numbers of false discoveries and false nondiscoveries. We provide an in-depth discussion of FPRP, including a comparison with the q value, and examine the empirical behavior of these measures, along with BFDP, via simulation. Finally, we use BFDP to assess the association between 131 single-nucleotide polymorphisms and lung cancer in a case-control study. 相似文献
18.
Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations 总被引:1,自引:0,他引:1
Truong HT Ramos AM Yalcin F de Ruiter M van der Poel HJ Huvenaars KH Hogers RC van Enckevort LJ Janssen A van Orsouw NJ van Eijk MJ 《PloS one》2012,7(5):e37565
Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence. The most distinguishing features of this technology are the ability to genotype any population structure, regardless whether parental data is included, and the ability to co-dominantly score SNP markers segregating in populations. To demonstrate the capabilities of SBG, we performed marker discovery and genotyping in Arabidopsis thaliana and lettuce, two plant species of diverse genetic complexity and backgrounds. Initially we obtained 1,409 SNPs for arabidopsis, and 5,583 SNPs for lettuce. Further filtering of the SNP dataset produced over 1,000 high quality SNP markers for each species. We obtained a genotyping rate of 201.2 genotypes/SNP and 58.3 genotypes/SNP for arabidopsis (n?=?222 samples) and lettuce (n?=?87 samples), respectively. Linkage mapping using these SNPs resulted in stable map configurations. We have therefore shown that the SBG approach presented provides users with the utmost flexibility in garnering high quality markers that can be directly used for genotyping and downstream applications. Until advances and costs will allow for routine whole-genome sequencing of populations, we expect that sequence-based genotyping technologies such as SBG will be essential for genotyping of model and non-model genomes alike. 相似文献
19.
MOTIVATION: Numerous annotations are available that functionally characterize genes and proteins with regard to molecular process, cellular localization, tissue expression, protein domain composition, protein interaction, disease association and other properties. Searching this steadily growing amount of information can lead to the discovery of new biological relationships between genes and proteins. To facilitate the searches, methods are required that measure the annotation similarity of genes and proteins. However, most current similarity methods are focused only on annotations from the Gene Ontology (GO) and do not take other annotation sources into account. RESULTS: We introduce the new method BioSim that incorporates multiple sources of annotations to quantify the functional similarity of genes and proteins. We compared the performance of our method with four other well-known methods adapted to use multiple annotation sources. We evaluated the methods by searching for known functional relationships using annotations based only on GO or on our large data warehouse BioMyn. This warehouse integrates many diverse annotation sources of human genes and proteins. We observed that the search performance improved substantially for almost all methods when multiple annotation sources were included. In particular, our method outperformed the other methods in terms of recall and average precision. 相似文献