首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted independently with plants of cassava (Manihot esculenta Crantz) growing in sand with nutrient solutions with four nitrate concentrations (0.5, 3, 6 or 12 mM). In leaves, nitrate-N was undetectable at the low nitrate applications; total-N, ammonium-N, amino acid-N, reduced-N and insoluble-N all increased linearly, while soluble proteins did it curvilinearly, with increasing nitrate supply. In contrast, soluble-N did not respond to N treatments. Total-N and soluble proteins, but not nitrate-N or ammonium-N, were much higher in leaves than in roots. Plants grown under severe N deficiency accumulated ammonium-N and amino acid-N in their roots. Further, plants were exposed to either 3 or 12 mM nitrate-N, and leaf activities of key N-assimilating enzymes were evaluated. Activities of nitrate reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase were considerably lower in low nitrate supply than in high one. Despite the low nitrate reductase activity, cassava leaves showed an ability to maintain a large proportion of N in soluble proteins.  相似文献   

2.
不同剂量的N^+离子注入长豇豆种子。豇豆开花结荚后,低剂量N^+离子处理能增加叶片的NR活性,促进NO^-3-N向氨基酸和蛋白质的转化;减少NO^-3-N的积累,提高叶片蛋白质和氨基酸含量。高剂量N^+离子处理抑制官种转化,豇豆结荚后期,叶片NO^-3-N积累增多。  相似文献   

3.
In many legumes the transition from the vegetative to the reproductivephase of development is associated with a marked increase inthe rate of symbiotic nitrogen fixation. In soya bean [Glycinemax (L.) Merr.), the removal of reproductive parts at differentstages of their development showed that the increase in nitrogenfixation rate was primarily due to the presence of flower buds.The increase in the fixation rate of intact reproductive plantswas accompanied by a rapid increase in the weight of noduleson lateral roots and it is suggested that these nodules areresponsible for much of the nitrogen fixation which occurs duringreproductive growth. Maintaining plants in the vegetative stateprovided evidence which suggests that it is the flower budsand not the flowering stimulus which are responsible for theincrease in fixation rate. The marked effects on vegetativegrowth of removing reproductive parts suggests that the mechanisminvolved in the promotion of nitrogen fixation may be hormonal. Glycine max (L.) Merr., soya bean, nitrogen fixation  相似文献   

4.
The Metabolism of Zeatin and Zeatin Riboside by Soya Bean Callus   总被引:1,自引:0,他引:1  
STADEN  J.VAN; DAVEY  J. E. 《Annals of botany》1977,41(5):1041-1048
Five cell division inducing compounds were found in soya beancallus irrespective of whether it wes grown on a zeatin or zeatinriboside containing basal medium. In both cases the major metaboliteseems to be zeatin glucoside. The significance of this metabolicstep in plant tissue is discussed.  相似文献   

5.
The removal of both cotyledons from soya bean seedlings 10 daysafter sowing, when the primary leaves were unfolded, reducedtheir stem height, branching, leaf production and dry weightat flowering by a similar proportion whether they were nodulatedor nitrate-dependent. Nitrogen assimilation by the shoots ofnitrate-dependent plants was increased by the removal of onecotyledon and reduced by the removal of both cotyledons althoughthese effects were not significant. Both these treatments significantlyincreased the amount of nitrogen in the shoots of nodulatedplants at flowering, mainly by more than doubling the nitrogencontent of their leaves. In contrast, the proportion of thetotal plant nitrogen in the leaves of nitrate-dependent plantswas almost constant. These results suggest that the cotyledonsmarkedly inhibit nitrogen assimilation by nodulated plants butdo not appreciably affect nitrogen assimilation by plants dependentsolely on inorganic nitrogen for their nitrogen supply. Glycine mux (L) Merr., soya bean, cotyledons, nitrogen assimilation, growth  相似文献   

6.
When soya bean seeds were exposed to pure aliphatic alcohols,the shorter alcohols were the most damaging (methanol > ethanol> n-propanol > n-butanol); when the alcohols were appliedin equal volumes of water, the opposite was found (n-propanol> ethanol > methanol), leakage of solutes from the pre-treatedtissue during subsequent imbibition in water was associatedin each case with the loss of germination and a decline in axisgrowth. Damage by the pure alcohols was related to the extentof their penetration and the amount of phospholipid eluted,injury caused by alcohols in the presence of water did not exhibitthese functions. It is proposed that damage to seeds by alcoholsis due to the elution or displacement of cellular phospholipidsand possibly the partial denaturation of membrane proteins Membranedamage is considered to be a prime cause of injury to the seed. Glycine max (L.) Merr., soya bean, seed, denaturation of membranes, alcohols, phospholipids  相似文献   

7.
The growth of cytokinin-dependent soya bean callus has beenshown to be accelerated by adding N-(purin-6-yl)glycine to themedium. Two biologically active peaks were detected when thecallus was cultured with N-(purin-6-yl)glycine. These two peaksco-chromatographed with 6-(2, 3, 4-trihydroxy-3-methylbutylamino)purineand zeatin respectively. When 14C labelled N-(purin-6-yl)glycinewas applied to the callus, radioactivity was found with boththese compounds irrespective of whether or not the N-(purin-6-yl)glycinewas labelled in the side chain or in the 8-position of the purinering. Small amounts of zeatin appear to be produced from N-(purin-6-yl)glycinewhich could explain why this compound stimulates the divisionof soya bean callus. N-(purin-6-yl)glycine, soya bean callus, metabolism, radioactivity, cytokinins  相似文献   

8.
This study was conducted to determine by gas chromatography (GC) and mass spectrometry (MS) the identity and the quantity of volatile N products produced during the helium-purged in vivo NR assay of soybean (Glycine max [L.] Merr. cv Williams) and winged bean (Psophocarpus tetragonolobus [L.] DC. cv Lunita) leaflets. Gaseous material for identification and quantitation was collected by cryogenic trapping of volatile compounds carried in the He-purge gas stream. As opposed to an earlier report, acetaldehyde oxime production was not detected by our GC method, and acetaldehyde oxime was shown to be much more soluble in water than the compound(s) evolved from soybean leaflets. Nitric oxide (NO) and nitrous oxide (N2O) were identified by GC and GC/MS as the main N products formed. NO and N2O produced from soybean leaflets were both labeled with 15N when 15N-nitrate was used in the assay medium, demonstrating that both were produced from nitrate during nitrate reduction. Other compounds co-trapped with NO and N2O were identified as air (N2, O2), CO2, methanol, acetaldehyde, and ethanol. Leaves of winged bean, subjected to the purged in vivo NR assay, evolved greater quantities of NO and N2O (13.9 and 0.37 micromole per gram fresh weight per 30 minutes, respectively) than did the soybean cv Williams (1.67 and 0.09 micromole per gram fresh weight per 30 minutes, respectively). In both species NO production was dominant. In contrast, with similar assays, NO and N2O were not evolved from leaves of the nr1 soybean mutant which lacks the constitutive NR enzymes. In addition to soybean cv Williams, six other Glycine sp. examined evolved significant quantities of NO(x) (NO and NO2). Other species including Neonotonia wightii (Arn.) Lackey comb. nov., Pueraria montana (Lour.) Merr., and Pueraria thunbergiana Benth. evolved lower levels of NO(x).  相似文献   

9.
Developing seeds of soya bean cultivars Chestnut and Altonahave only trace amounts of ß-amylase activity. Comparedto a standard variety, Wells, ß-amylase activitieswere 200–300 times lower in Chestnut and Altona. Nevertheless,Chestnut and Altona accumulate starch as a transient reservematerial which is utilized later in development. Seeds of Chestnutand Altona also produce starch early in germination which subsequentlydeclines after the 4th day of germination. Throughout germinationß-amylase levels in these cultivars are about 300-foldlower than that observed in Wells, which has a similar patternof starch metabolism. Widely varying levels of ß-amylasein both developing and germinating seeds appear to be unrelatedto starch metabolism which is very similar in all cultivarsstudied. Consequently, ß-amylase activity seems irrelevantto starch metabolism in the soya bean seed. starch, ß-amylase, Glycine max. (L.), Merr, soya bean  相似文献   

10.
We previously showed that the selective accumulation of phosphoenolpyruvate carboxylase (PEPC) in photosynthetically maturing maize (Zea mays L.) leaf cells induced by nitrate supply to nitrogen-starved plants was primarily a consequence of the level of its mRNA (B Sugiharto, K Miyata, H Nakamoto, H Sasakawa, T Sugiyama [1990] Plant Physiol 92: 963-969). To determine the specificity of inorganic nitrogen sources for the regulation of PEPC gene expression, nitrate (16 millimolar) or ammonium (6 millimolar) was supplied to plants grown previously in low nitrate (0.8 millimolar), and changes in the level of PEPC and its mRNA were measured in the basal region of the youngest, fully developed leaves of plants during recovery from nitrogen stress. The exogenous supply of nitrogen selectively increased the levels of protein and mRNA for PEPC. This increase was more pronounced in plants supplemented with ammonium than with nitrate. The accumulation of PEPC during nitrogen recovery increased in parallel with the increase in the activity of glutamine synthetase and/or ferredoxin-dependent glutamate synthase. Among the major amino acids, glutamine was the most influenced during recovery, and its level increased in parallel with the steady-state level of PEPC mRNA for 7 hours after nitrogen supply. The administration of glutamine (12 millimolar) to nitrogen-starved plants increased the steady-state level of PEPC mRNA 7 hours after administration, whereas 12 millimolar glutamate decreased the level of PEPC mRNA. The results indicate that glutamine and/or its metabolite(s) can be a positive control on the nitrogen-dependent regulation of PEPC gene expression in maize leaf cells.  相似文献   

11.
Fiskeby V soya bean was grown from seed germination to seedmaturation with two contrasting patterns of nitrogen metabolism:either wholly dependent on dinitrogen fixation, or with an abundantsupply of nitrate nitrogen, but lacking root nodules. The carbonand nitrogen economies of the plants were assessed at frequentintervals by measurements of photosynthesis, shoot and rootrespiration, and organic and inorganic nitrogen contents. Plantsfixing atmospheric nitrogen assimilated only 25–30 percent as much nitrogen as equivalent plants given nitrate nitrogen:c. 40 per cent of the nitrogen of ‘nitrate’ plantswas assimilated after dinitrogen fixation had ceased in ‘nodulated’plants. The rates of photosynthesis and respiration of the shootsof soya bean were not markedly affected by source of nitrogen;in contrast, the roots of ‘nodulated’ plants respiredtwice as rapidly during intense dinitrogen fixation as thoseof ‘nitrate’ plants. The magnitude of this respiratoryburden was calculated to increase the daily whole-plant respiratory loss of assimilate by 10–15 per cent over thatof plants receiving abundant nitrate. It is concluded that ‘nodulated’plants grew more slowly than ‘nitrate’ plants inthese experiments for at least two reasons: firstly, the symbioticassociation fixed insufficient nitrogen for optimum growth and,secondly, the assimila tion of the nitrogen which was fixedin the root nodules was more energy-demanding in terms of assimilatethan that of plants which assimilated nitrogen by reducing nitratein their leaves.  相似文献   

12.
We were interested in determining whether the low protein contentof pea seeds (Pisum sativum L.) as compared to soya bean seeds(Glycine max L. Merrill) might be due to faster degradationof the pea storage proteins during development of the seed.Pea and soya bean cotyledons were subjected to a ‘pulse-chase’experiment using [3H]glycine in in-vitro cultures. In peas,legumin had a half-life of 146 days, while vicilin had a half-lifeof 39 days. There was no measureable degradation of soya beanstorage proteins. Even with the pea storage proteins, the half-liveswere so much longer than the maturation time of seeds that degradationof storage proteins could not account for the lower proteincontent of peas as compared to soya beans. The validity of theseresults was indicated by the finding that non-storage proteinshad much shorter half-lives and that omission of a carbon ora nitrogen source greatly accelerated degradation. Labelledglycine was found to be a good probe for protein turnover studiesbecause it was very rapidly metabolized. Glycine max L. Merrill, soya bean, Pisum sativum, L. pea, protein turnover, storage proteins, legumin, vicilin  相似文献   

13.
The plastochron index (PI) has been compared with leaf growthand biomass accumulation in young soya bean plants of severalcultivars that were grown in controlled environments with differentirradiance levels and durations, temperatures, and nitrogen(N) regimes. Increasing the photoperiod from 10 to 16 h day–1 increasedthe plastochron rate (PR) and the proportion of axillary growth.Doubling the photosynthetic photon flux density (PPFD) to 1000µmol m–2S–1, increased PR and the proportionof roots to total plant weight, but decreased the proportionof stems plus petioles to total. In a series of experiments,the plants were grown in an 8 h photoperiod at constant temperaturesof 17, 20, 26 or 32 °C. As temperature increased, PR increased,but the duration of leaf expansion decreased. Leaves were largestat 20 and progressively smaller at 26, 32 and 17 °C. Biomasswas greatest for a given PI at 20 °C and decreased in theorder of 26, 32, and 17 °C. The proportion of axillary growthalso was greatest at 20 °C. When plants were grown in a15 h photoperiod at temperatures from 17.1 to 26.6 °C, leafsize continued to increase up to the highest temperature. At17 °C, the PR in the 15 h photoperiod (PPFD 390 µmol;m–2S–1) was about threefold greater than in 8 h(500 µmol m–2 S–1); biomass accumulation perday was about fivefold greater. Increasing N from 3 to 36 mMincreased PR about 10 per cent, altered biomass partitioningamong plant parts, and increased the biomass of the plants.The NO2 form of N markedly stimulated axillary growth as comparedwith the NH4+ form. Environment or cultivar had little influenceon the duration of leaf expansion in terms of PI. Cultivarsdid not differ consistently in biomass production and allocationin the different environments. Glycine max (L.) Merrill, soybean, soya bean, plastochron index, leaf development, growth analysis, partitioning, light, nitrogen, temperature  相似文献   

14.
15.
The effects of adding molybdate and selenite to a glucose-minimal salts medium on the formation of enzymes involved in the anaerobic metabolism of formate and nitrate in Escherichia coli have been studied. When cells were grown anaerobically in the presence of nitrate, molybdate stimulated the formation of nitrate reductase and a b-type cytochrome, resulting in cells that had the capacity for active nitrate reduction in the absence of formate dehydrogenase. Under the same conditions, selenite in addition to molybdate was required for forming the enzyme system which permits formate to serve as an effective electron donor for nitrate reduction. When cells were grown anaerobically on a glucose-minimal salts medium without nitrate, active hydrogen production from formate as well as formate dehydrogenase activity depended on the presence of both selenite and molybdate. The effects of these metals on the formation of formate dehydrogenase was blocked by chloramphenicol, suggesting that protein synthesis is required for the increases observed. It is proposed that the same formate dehydrogenase is involved in nitrate reduction, hydrogen production, and in aerobic formate oxidation.  相似文献   

16.
Soya Bean Seed Growth and Maturation In vitro without Pods   总被引:2,自引:0,他引:2  
Immature Glycine max (L.) Merrill seeds, initially between 50and 450 mg f. wt, were grown and matured successfully in vitro.Excised seeds were floated in a liquid medium containing 5 percent sucrose, minerals and glutamine in flasks incubated at25 °C under 300 to 350 µE m–2 s–1 fluorescentlight. During 16 to 21 d in culture, seeds grew to a matured. wt of 100 to 600 mg per seed at an average rate of 5 to 25mg d. wt per seed d–1 depending on initial size. Growthrates were maximal during the first 8 to 10 d in vitro but declinedwith loss of green colour in the cotyledons. Seed coats rupturedwith rapid cotyledon expansion during the first 2 d in culture.Embryos were tolerant to desiccation and 80 to 90 per cent germinatedif removed from culture before complete loss of green colour.The growth of excised seeds in vitro exceeded the growth ofseeds in detached pods, but when windows were cut in pods topermit direct exposure of seeds to the medium, seed growth wascomparable. Glycine max (L.) Merrill, soya bean, seed culture, seed growth, seed maturation, germination  相似文献   

17.
Three soya-bean (Glycine max) cell-wall enzymes (ß-glucosidase,pectin methyl esterase and phosphatase) have been found to beglycoproteins. The polyclonal antibodies raised against pectinmethyl esterase and ß-glucosidase lacked specificity,cross-reacted highly with native enzymes and also both reactedwith pure soya-bean phosphatase, horseradish peroxidase andhoneybee venom phospholipase A2. They did not react with eithernon-glycosylated bacterial phosphatase or deglycosylated cell-wallenzymes. The two antisera contained both non-specific anti-glycanantibodies and specific anti-polypeptide antibodies that werequantified. Antiglycan antibodies specific to 1–3 fucoseand ß1–2 xylose were detected in both antiseraand were separated and quantified. The occurrence of terminalfucose (and mannose) was confirmed with specific lectins. Theseresults indicate that most of the common glycan epitopes probablycorrespond to the asparagine-linked complex glycan previouslydetected in several glycoproteins of plants as well as in thoseof molluscs and insects. (Received March 10, 1993; Accepted November 5, 1993)  相似文献   

18.
Floral development includes initiation of floral primordia andsubsequent anthesis as discrete events, even though in manyinvestigations only anthesis is considered. For ‘Ransom’soya bean [Glycine max (L.) Merrill] grown at day/night temperaturesof 18/14, 22/18, 26/22, 30/26, and 34/30 °C and exposedto photoperiods of 10, 12, 14, 15, and 16 h, time of anthesisranged from less than 21 days after exposure at the shorterphotoperiods and warmer temperatures to more than 60 days atlonger photoperiods and cooler temperatures. For all temperatureregimes, however, floral primordia were initiated under shorterphotopenods within 3 to 5 days after exposure and after notmore than 7 to 10 days exposure to longer photoperiods. Onceinitiation had begun, time required for differentiation of individualfloral primordia and the duration of leaf initiation at shootapices increased with increasing length of photoperiod. Whileproduction of nodes ceased abruptly under photoperiods of 10and 12 h, new nodes continued to be formed concurrently withinitiation of axillary floral primordia under photoperiods of14, 15 and 16 h. The vegetative condition at the main stem shootapex was prolonged under the three longer photoperiods and issuggestive of the existence of an intermediate apex under theseconditions. The results indicate that initiation and anthesisare controlled independently rather than collectively by photoperiod,and that floral initiation consists of two independent steps—onefor the first-initiated flower in an axil of a main stem leafand a second for transformation of the terminal shoot apex fromthe vegetative to reproductive condition. Apical meristem, intermediate apex, floral initiation, anthesis, photoinduction, Glycine max(L.) Merrill, soya bean, photoperiod, temperature  相似文献   

19.
20.
Winged bean acidic lectin was purified by DEAE-Sephadex A-50 and affinity chromatography on N-acetylgalactosamine-agarose gel. The purified lectin was a glycoprotein homogeneous on polyacrylamide gel electrophoresis, isoelectric focusing, and gel filtration. The molecular weight of the lectin was 52,000 by gel filtration, and SDS-polyacrylamide gel electrophoresis gave a single component of molecular weight of 27,000. Its isoelectric point was 5.5. The acidic lectin was rich in acidic amino acids, and contained 2mol of methionine but no cystine. It also agglutinated both trypsinized and untreated human erythrocytes (types A, B, AB and O), but not rabbit erythrocytes. The hemagglutination was inhibited by d-galactose and related sugars. Modification of the acidic lectin with N-bromosuccinimide caused a concomitant loss of the hemagglutinating activity with oxidation of tryptophan residue. The acidic lectin was immunologically different from the purified winged bean basic lectin by double immunodiffusion using antiserum raised against the basic lectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号