首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,25-dihydroxycholecalciferol (1,25(OH)2D3) possesses proliferation and differentiation modulating effects in many cell types in vitro. We studied the effect of 1,25(OH)2D3 on 3H-thymidine incorporation in FRTL5 cells, a cultured rat thyroid follicular cell line. 1,25(OH)2D3 alone at 10(-11) and 10(-9) M exerted no effect on 3H-thymidine incorporation. However, at 10(-7) M, 1,25(OH)2D3 slightly enhanced 3H-thymidine incorporation. In the presence of 5% calf serum, 1,25(OH)2D3 increased 3H-thymidine incorporation induced by calf serum in a dose-dependent manner. 1,25(OH)2D3 also enhanced 3H-thymidine incorporation induced by PMA, an extrinsic stimulator of protein kinase C, without directly affecting PMA-induced protein kinase C translocation. In contrast to the stimulatory effects of 1,25(OH)2D3 on the calf serum and PMA-induced 3H-thymidine incorporation, 1,25(OH)2D3 inhibited the increase in 3H-thymidine incorporation induced by TSH in a dose-dependent manner. This effect of 1,25(OH)2D3 on TSH-induced 3H-thymidine incorporation may be, in part, due to post-cAMP pathways since 1,25(OH)2D3 also inhibited the increase in 3H-thymidine incorporation induced by Bu2cAMP without affecting the TSH-induced increase in cAMP. The stimulatory effect of insulin on 3H-thymidine incorporation, a cAMP-independent process, was also inhibited by 1,25(OH)2D3. We conclude that 1,25(OH)2D3 affects 3H-thymidine incorporation in FRTL5 cells raising the possibility of a physiologic role for 1,25(OH)2D3 in the growth and function of thyroid follicular cells.  相似文献   

2.
3.
Human pulmonary artery smooth muscle cells (hPASM cells) express PDE4A10, PDE4A11, PDE4B2, PDE4C and PDE4D5 isoforms. Hypoxia causes a transient up-regulation of PDE4B2 that reaches a maximum after 7 days and sustained up-regulation of PDE4A10/11 and PDE4D5 over 14 days in hypoxia. Seven days in hypoxia increases both intracellular cAMP levels, protein kinase A (PKA) activity and activated, phosphorylated extracellular signal regulated kinase (pERK) but does not alter either PKA isoform expression or total cAMP phosphodiesterase-4 (PDE4) activity or cAMP phosphodiesterase-3 (PDE3) activity. Both the cyclooxygenase inhibitor, indomethacin and the ERK inhibitors, UO126 and PD980589 reverse the hypoxia-induced increase in intracellular cAMP levels back to those seen in normoxic hPASM cells. Challenge of normoxic hPASM cells with prostaglandin E(2) (PGE(2)) elevates cAMP to levels comparable to those seen in hypoxic cells but fails to increase intracellular cAMP levels in hypoxic hPASM cells. The adenylyl cyclase activator, forskolin increases cAMP levels in both normoxic and hypoxic hPASM cells to comparable elevated levels. Challenge of hypoxic hPASM cells with indomethacin attenuates total PDE4 activity whilst challenge with UO126 increases total PDE4 activity. We propose that the hypoxia-induced activation of ERK initiates a phospholipase A(2)/COX-driven autocrine effect whereupon PGE(2) is generated, causing the activation of adenylyl cyclase and increase in intracellular cAMP. Despite the hypoxia-induced increases in the expression of PDE4A10/11, PDE4B2 and PDE4D5 and activation of certain of these long PDE4 isoforms through PKA phosphorylation, we suggest that the failure to see any overall increase in PDE4 activity is due to ERK-mediated phosphorylation and inhibition of particular PDE4 long isoforms. Such hypoxia-induced increase in expression of PDE4 isoforms known to interact with certain signalling scaffold proteins may result in alterations in compartmentalised cAMP signalling. The hypoxia-induced increase in cAMP may represent a compensatory protective mechanism against hypoxia-induced mitogens such as endothelin-1 and serotonin.  相似文献   

4.
1α,25-Dihydroxyvitamin D(3) (1,25D(3)) is the active metabolite of vitamin D(3) and the major calcium regulatory hormone in tissues. The aim of this work was to investigate the mechanism of action of 1,25D(3) on (45)Ca(2+) uptake in Sertoli cells from 30-day-old rats. Results showed that 10(-9) and 10(-12) M 1,25D(3) increased the rate of (45)Ca(2+) uptake 5 and 15 min after hormone exposure and that 1α,25(OH)(2) lumisterol(3) (JN) produced a similar effect suggesting that 1,25D(3) action occurs via a putative membrane receptor. The involvement of voltage-dependent calcium channels (VDCC) in 1,25D(3) action was evidenced by using nifedipine, while the use of Bapta-AM demonstrated that intracellular calcium was not implicated. Moreover, the incubation with ouabain and digoxin increased the rate of (45)Ca(2+) uptake, indicating that the effect of 1,25D(3) may also result from Na(+)/K(+)-ATPase inhibition. In addition, we demonstrated that the mechanism underlying the hormone action involved extracellular signal-regulated kinase (ERK) and protein kinase C (PKC) activation in a phospholipase C-independent way. Furthermore, a local elevation of the level of cAMP, as demonstrated by incubating cells with dibutyryl cAMP or a phosphodiesterase inhibitor, produced an effect similar to that of 1,25D(3), and the inhibition of protein kinase A (PKA) nullified the hormone action. In conclusion, the stimulatory effect of 1,25D(3) on (45)Ca(2+) uptake in Sertoli cells occurs via VDCC, as well as PKA, PKC, and ERK activation. These protein kinases seem to act by inhibiting Na(+)/K(+)-ATPase or directly phosphorylating calcium channels. The Na(+)/K(+)-ATPase inhibition may result in Na(+)/Ca(2+) exchanger activation in reverse mode and consequently induce the uptake of calcium into the cells.  相似文献   

5.
In this study the relationship between cell binding of phorbol 12,13-dibutyrate (PDBu) and induction of differentiation by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was examined. Binding of [3H]PDBu increased within 12 h of 1,25-(OH)2D3 treatment, and a 60-130% increase in [3H]PDBu receptor levels was observed within 24 h. By 48 h, however, [3H]PDBu binding was not different from control. Scatchard analysis of [3H]PDBu binding showed no statistical differences in Kd value (Kd approximately equal to 30 nM) between 1,25-(OH)2D3-treated and control cells 22 h post-treatment; however, a 2-fold increase in Bmax was observed in treated (338 +/- 24 pmol/10(9) cells) compared to control cultures (170 +/- 14 pmol/10(9) cells). Stimulation of [3H]PDBu binding was dependent on 1,25-(OH)2D3 concentrations over a range of 1-100 nM. Homogenates from 1,25-(OH)2D3-treated HL-60 cells also demonstrated an increase (70%) in [3H]PDBu binding to the Ca2+/phospholipid-dependent enzyme protein kinase C as assessed by incubation of cell homogenates with [3H]PDBu in the presence of saturating phosphatidylserine and calcium concentrations. This suggests that the increase in [3H]PDBu binding cannot be entirely explained by modulation of the latter two agents. Cycloheximide (5 microM), an inhibitor of protein synthesis, ablated the 1,25-(OH)2D3-stimulated increase in [3H]PDBu binding to intact HL-60 cells. These data demonstrate that an increase in [3H]PDBu binding occurs early in the course of 1,25-(OH)2D3-induced differentiation, results from an increased number of [3H]PDBu-binding site, and is dependent on protein synthesis.  相似文献   

6.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] regulates the synthesis of bone gamma-carboxyglutamic acid (Gla) protein (BGP) by osteoblastic cells. In this study we examined the effect of cAMP, alone and in combination with 1,25-(OH)2D3, on the regulation of BGP mRNA levels in ROS 17/2 rat osteosarcoma cells. Elevation of intracellular cAMP levels by cAMP analogs or by isobutylmethylxanthine (IBMX), forskolin, or PTH, resulted in increased BGP mRNA levels and BGP secretion after 1 day of treatment. The effects of these agents were additive with 1,25-(OH)2D3 in stimulating BGP gene expression. After 4 days of treatment, pertussis toxin (PT) and 1,25-(OH)2D3 were synergistic in stimulating BGP mRNA, and the effect of PT could be mimicked by (Bu)2cAMP, IBMX, forskolin, cholera toxin, and to a lesser extent by PTH. The effect of 1-day treatment with cAMP alone and the synergistic effect with 1,25-(OH)2D3 on the stimulation of BGP mRNA were dependent on cell density, while basal and 1,25-(OH)2D3-stimulated synthesis were not. Cyclic AMP inhibited ROS 17/2 cell growth after 1 day of treatment, an effect that was also dependent on initial cell density. After 4 days of treatment, 1,25-(OH)2D3, cAMP, and PT all demonstrated inhibition of cell growth. When cells were treated with actinomycin D, both 1,25-(OH)2D3 and cAMP stimulation of BGP mRNA were blocked. In addition, neither agent was effective in enhancing BGP mRNA stability when prestimulated cells were exposed to actinomycin D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
In the present study the involvement of protein kinase C in the action of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on osteoblast-like cells and in the stimulation of in vitro bone resorption by 1,25(OH)2D3 was examined. Incubation for 24 h with 1,25(OH)2D3 potently stimulated osteocalcin synthesis by ROS 17/2.8 cells. This stimulation was inhibited (30-70% inhibition) by 25 microM of the protein kinase C (PKC) inhibitors 1-O-hexadecyl-2-O-methyl-rac-glycerol (AMG) and sphingosine without affecting basal osteocalcin synthesis. 1,25(OH)2D3-stimulated osteocalcin secretion by nontransformed isolated fetal rat osteoblasts was also inhibited (30-55%) by AMG. Also, AMG inhibited 10(-9) M 1,25(OH)2D3-induced up-regulation of vitamin D receptor in ROS 17/2.8 cells. Activation of PKC with phorbol 12-myristate 13-acetate (PMA) did not cause an increase in osteocalcin secretion, while only a small increase in cellular content of osteocalcin in ROS 17/2.8 cells was observed. Addition of PMA together with 1,25(OH)2D3 did not change the response to 1,25(OH)2D3. The PKC inhibitors were not toxic for the cells. 1,25(OH)2D3 did not stimulate diacylglycerol production in ROS 17/2.8 cells up to 5 min after administration. However, 4- and 24-h incubation with 10 nM 1,25(OH)2D3 increased phorbol ester binding in ROS 17/2.8 cells. 1,25(OH)2D3 potently stimulated bone resorption after 3 and 6 days of culture in fetal mouse long bones and calvaria. Both the PKC inhibitors AMG (25 microM) and staurosporine (50 nM) strongly inhibited (60-86% inhibition) 1,25(OH)2D3-stimulated bone resorption without affecting basal 45Ca release. These effects were not due to a cytotoxic effect of both PKC inhibitors. Nor is it likely that the effects of AMG and staurosporine are due to inhibition of cell proliferation as hydroxyurea did not affect 1,25(OH)2D3-stimulated bone resorption. The inhibition of 1,25(OH)2D3-stimulated bone resorption by PKC inhibitors suggests that besides osteocalcin synthesis PKC is also involved in other responses of 1,25(OH)2D3 in bone. 1,25(OH)2D3 does not directly activate PKC via an increase in diacylglycerol production but more likely via an increase in PKC. Together, the present study demonstrates a functional involvement of PKC in the action of 1,25(OH)2D3 in bone and bone cells which may have consequences for the development of 1,25(OH)2D3 analogs, e.g. with less hypercalcemic and relatively more antiproliferative activity.  相似文献   

9.
To understand further the mechanism of action of parathyroid hormone (PTH) in the stimulation of the number of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) binding sites in UMR 106-01 cells we studied the role of cAMP and calcium. In addition to PTH other agents known to act via the cAMP signal pathway, prostaglandin E2, forskolin and dibutyryl cAMP, caused an increase in 1,25(OH)2D3 binding. Addition of the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl)adenine resulted in a marked decrease of PTH-stimulated cAMP production but this was not followed by a reduction of 1,25(OH)2D3 receptor up-regulation by PTH. Increasing the intracellular calcium concentration by Bay K 8644 and A23817 independent of an activation of the cAMP signal pathway did not result in an increased 1,25(OH)2D3 binding. The calcium channel blockers nitrendipine and verapamil and chelating extracellular calcium with EGTA all reduced cAMP-mediated stimulation of 1,25(OH)2D3 binding. This reduction was not due to a reduce cAMP production as verapamil even potentiated PTH- and forskolin-stimulated cAMP production in a dose-dependent manner. The present study provides evidence for an interrelated action of calcium and cAMP in the heterologous up-regulation of the 1,25(OH)2D3 receptor. The current data show an interaction between the cAMP and calcium signal pathway at (1) the level of cAMP generation/degradation, and (2) a level located distal in the cascade leading to 1,25(OH)2D3 receptor up-regulation.  相似文献   

10.
Phorbol 12-myristate 13-acetate (100 nM), a potent protein kinase C and macrophage activator, has a biphasic affect on 25(OH)D3-1 alpha-hydroxylase activity in synovial fluid macrophages from arthritis patients. After 5 h, 1 alpha, 25(OH)D3 synthesis fell from 5.2 +/- 0.1 to 1.6 +/- 0.2 pmol/h per 10(6) cells, however, after 24 h and 48 h, synthesis increased to 17.4 +/- 0.3 and 22.3 +/- 1.4 pmol/h per 10(6) cells, respectively. Although an independent short-term mechanism is suggested, protein kinase C may promote macrophage activation, thus increasing long-term 25(OH)D3-1 alpha-hydroxylase expression. Intracellular calcium and cAMP are unlikely to activate the enzyme, since 0.1 microM of the calcium ionophore, A23187, and 1 mM dibutyryl-cAMP inhibited synthesis by 87% and 79%, respectively, after 24 h.  相似文献   

11.
12.
Demonstrating 1,25(OH)2D3-stimulated calcium uptake in isolated chick intestinal epithelial cells has been complicated by simultaneous enhancement of both uptake and efflux. We now report that in intestinal cells of adult birds, or those of young birds cultured for 72 h, 1,25(OH)2D3-stimulates 45Ca uptake to greater than 140% of corresponding controls within 3 min of addition. Such cells have lost hormone-stimulated protein kinase C (PKC) activity, believed to mediate calcium efflux. To further test this hypothesis, freshly isolated cells were preincubated with calphostin C, and calcium uptake monitored in the presence or absence of steroid. Only cells treated with the PKC inhibitor demonstrated a significant increase in 45Ca uptake in response to 1,25(OH)2D3, relative to corresponding controls. In addition, phorbol ester was shown to stimulate efflux, while forskolin stimulated uptake. To further investigate the mechanisms involved in calcium uptake, we assessed the role of TRPV6 and its activation by beta-glucuronidase. beta-Glucuronidase secretion from isolated intestinal epithelial cells was significantly increased by treatment with 1,25(OH)2D3, PTH, or forskolin, but not by phorbol ester. Treatment of cells with beta-glucuronidase, in turn, stimulated 45Ca uptake. Finally, transfection of cells with siRNA to either beta-glucuronidase or TRPV6 abolished 1,25(OH)2D3-enhanced calcium uptake relative to controls transfected with scrambled siRNA. Confocal microscopy further indicated rapid redistribution of enzyme and calcium channel after steroid. 1,25(OH)2D3 and PTH increase calcium uptake by stimulating the PKA pathway to release beta-glucuronidase, which in turn activates TRPV6. 1,25(OH)2D3-enhanced calcium efflux is mediated by the PKC pathway.  相似文献   

13.
1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has been reported to stimulate lung maturity, alveolar type II cell differentiation, and pulmonary surfactant synthesis in rat lung. We hypothesized that 1,25(OH)(2)D(3) stimulates expression of surfactant protein-A (SP-A), SP-B, and SP-C in human fetal lung and type II cells. We found that immunoreactive vitamin D receptor was detectable in fetal lung tissue and type II cells only when incubated with 1,25(OH)(2)D(3). 1,25(OH)(2)D(3) significantly decreased SP-A mRNA in human fetal lung tissue but did not significantly decrease SP-A protein in the tissue. In type II cells, 1,25(OH)(2)D(3) alone had no significant effect on SP-A mRNA or protein levels but reduced SP-A mRNA and protein in a dose-dependent manner when the cells were incubated with cAMP. SP-A mRNA levels in NCI-H441 cells, a nonciliated bronchiolar epithelial (Clara) cell line, were decreased in a dose-dependent manner in the absence or presence of cAMP. 1,25(OH)(2)D(3) had no significant effect on SP-B mRNA levels in lung tissue but increased SP-B mRNA and protein levels in type II cells incubated in the absence or presence of cAMP. Expression of SP-C mRNA was unaffected by 1,25(OH)(2)D(3) in lung tissue incubated +/- cAMP. These results suggest that regulation of surfactant protein gene expression in human lung and type II cells by 1,25(OH)(2)D(3) is not coordinated; 1,25(OH)(2)D(3) decreases SP-A mRNA and protein levels in both fetal lung tissue and type II cells, increases SP-B mRNA and protein levels only in type II cells, and has no effect on SP-C mRNA levels.  相似文献   

14.
15.
16.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) treatment of osteoblastic cells was shown previously to attenuate Parathyroid hormone (PTH) response by inhibiting adenylyl cyclase (AC) activity. In this study, we have investigated the mechanism by which 1,25(OH)(2)D(3) inhibits AC in rat osteoblastic UMR 106-01 cells. 1,25(OH)(2)D(3) treatment inhibited both PTH and forskolin-stimulated AC activity by 25%-50% within 12 min in a concentration-dependent manner suggesting a direct inhibition of the AC enzyme. Treatment with 25(OH)D(3) had no effect on basal or stimulated AC activity. We determined the profile of AC subtypes expressed in UMR cells and found AC VI to be the dominant subtype accounting for 50% of AC mRNA. Since AC VI can be inhibited by protein kinase C (PKC) phosphorylation, we examined 1,25(OH)(2)D(3) activation of various PKC isoforms. 1,25(OH)(2)D(3) increased the membrane translocation of PKC-betaI, -delta, and -zeta with a concomitant increase in PKC activity. The translocation of PKC-betaI and -delta was blocked by the PLC inhibitor U73122 whereas that of PKC-zeta was abolished by the PI-3 kinase inhibitor wortmannin. The attenuation of cAMP production by 1,25(OH)(2)D(3) was antagonized by the PKC inhibitors Go6850, calphostin C, and wortmannin, but not by a calmodulin kinase II (CaMKII) inhibitor. Treatment with 1,25(OH)(2)D(3) for 20 min increased AC VI phosphorylation by 10.8-fold and this was blocked partially by Go6850 and partially by wortmannin but was unaffected by CaMKII inhibitor. These results demonstrate that 1,25(OH)(2)D(3) activation of PKC isoforms leads to phosphorylation of AC VI and inhibition of PTH-activation of this pathway in osteoblasts.  相似文献   

17.
The synthesis of osteocalcin, the major non-collagenous protein of adult bone, was examined in cultures of 21-day fetal rat calvariae. Osteocalcin was measured by a sensitive and specific radioimmunoassay. Osteocalcin concentration in unincubated calvariae was 14.5 +/- 0.5 ng/calvaria. After incubation, there was a continuous increase in bone and medium osteocalcin, and by 96 h the values were about 100% higher than in unincubated calvariae. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) at 10(-11) to 10(-8)M increased osteocalcin synthesis. The effect appeared as early as 6 h after treatment and was primarily observed in the culture medium, and 1,25-(OH)2D3 stimulated osteocalcin up to 9-fold by 96 h. Concomitant with the effect on osteocalcin synthesis, 1,25-(OH)2D3 inhibited collagen synthesis. Cycloheximide markedly decreased osteocalcin concentrations in control and 1,25-(OH)2D3-treated calvariae. The stimulatory effect on osteocalcin synthesis was specific to 1,25-(OH)2D3 since 24,25-dihydroxyvitamin D3, parathyroid hormone, epidermal growth factor, and prostaglandin E2 did not stimulate osteocalcin synthesis, and parathyroid hormone and epidermal growth factor opposed the 1,25-(OH)2D3 stimulatory effect. Insulin did not alter osteocalcin concentration by itself but enhanced the effect of 1,25-(OH)2D3. In conclusion, 1,25-(OH)2D3 stimulates osteocalcin synthesis in cultures of normal calvariae, but this effect is not shared by other hormones known to affect bone metabolism.  相似文献   

18.
In previous works we have found a mitochondrial alkaline phosphatase (AP) activity in LLC-PK1. The aim of this work has been to study the possible involvement of mitochondrial AP activity in the synthesis of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) from the substrate 25(OH)D3. Renal phenotype LLC-PK1 cells were incubated with 25(OH)D3 as substrate and treated with or without 1,25(OH)2D3, forskolin, 12-myristate-13-acetate (PMA) and 1,25(OH)2D3 in conjunction with PMA. Incubation of LLC-PK1 cells with forskolin (adenylate cyclase activator) not only stimulated the 1-hydroxylase and inhibited the 24-hydroxylase activities but also increased the mitochondrial AP activity. The addition of 1,25(OH)2D3, the main activator of 24-hydroxylase, produced a decrease of mitochondrial AP activity, a decrease of 1,25(OH)2D3 synthesis and an increase of the 24,25(OH)2D3 synthesis. Incubation with PMA, a potent activator of protein kinase C, did not produce any changes in mitochondrial AP activity, but an inhibition of 1,25(OH)2D3 and an activation of 24,25(OH)2D3 synthesis were found. Moreover, incubation of LLC-PK1 cells with PMA in conjunction with 1,25(OH)2D3 produced an additive effect in the decrease of 1,25(OH)2D3 and an increase of 24,25(OH)2D3 synthesis remaining mitochondrial AP activity as cells treated only with 1,25(OH)2D3. Our results suggest that mitochondrial AP activity could be involved as an intracellular signal in the regulation of 25(OH)D3 metabolism to the synthesis of 1,25(OH)2D3 and 24,25(OH)2D3 in renal phenotype LLC-PK1 cells through cAMP protein kinase system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号