首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel capillary zone electrophoresis (CZE) assay method was developed to evaluate the systemic disposition of [d-pen2,5]enkephalin (DPDPE) in rats. DPDPE was recovered from serum samples (200 μl) by solid-phase extraction. Complete resolution of DPDPE and the internal standard ([d-ser2]leucine-enkephalin; DSLET) from other serum components was achieved within 15 min on a 50-μm I.D. capillary column with borate buffer (25 mM, pH 8.3). The peak-height ratio (DPDPE to DSLET) was linear through 100 μg/ml, with a detection limit of 250 ng/ml in serum, when absorbance of the column eluent was monitored at 210 nm. Serum samples obtained from rats after a 10 mg/kg intravenous bolus dose of DPDPE were analyzed with the present CZE method. The results suggest that CZE is a useful technique for quantitating therapeutic peptides in biological matrices.  相似文献   

2.
A liquid chromatographic method with UV detection for the quantification of nimesulide (N) and hydroxynimesulide (M1) in rat plasma, cerebrospinal fluid (CSF) and brain tissue is reported. Plasma samples (250 microl) and brain homogenates added with the right amount of the internal standard (I.S., 2'-(cyclohexyloxy)-4'-nitrophenyl methanesulphonanilide, NS398) are extracted on C(18) disposable cartridges by solid-phase extraction (SPE), while CSF samples are analyzed without any extraction. The separation is performed at room temperature on a Waters Symmetry C(18) 3.5 microm (150x4.6 mm I.D.) column with acetonitrile-sodium citrate buffer pH 3.00 (53:47, v/v) as mobile phase, at a flow-rate of 1.1 ml/min and detection at 240 nm. The retention times are 3.3, 6.0 and 9.9 min for M1, N and I.S., respectively. The lower limits of quantitation for either nimesulide and M1 are 25 ng/ml for plasma, 20 ng/ml for CSF and 25 ng/g for brain tissue. The calibration curves are linear up to 10,000 ng/ml for plasma, 5000 ng/ml for CSF and 5000 ng/g for brain tissue. This new assay can be applied to the study of the role of nimesulide in the modulation of neuroinflammatory processes.  相似文献   

3.
A rapid and sensitive LC-MS-MS method for the determination of huperzine A in dog plasma using huperzine B as internal standard has been developed and validated. The analyte and internal standard were extracted from plasma using n-hexane-dichloromethane-2-propanol (300:150:15, v/v/v), chromatographed on a C(18) column (5 microm, 50 mm x 4.6 mm i.d.) with a mobile phase consisting of acetonitrile-methanol-10mM ammonium acetate (35:40:25, v/v/v), and detected using a tandem mass spectrometer with a TurboIonSpray ionization interface. The run time was only 2 min. The assay was linear over the concentration range 0.05-20 ng/ml and intra- and inter-day precision over this range were <5.3% with good accuracy. The limit of detection in plasma was 0.01 ng/ml. The method was successfully applied to define plasma concentration-time curves of huperzine A in dogs after the last dose of an intramuscular injection (10 microg/kg per day for 15 days) of a sustained-release formulation of huperzine A.  相似文献   

4.
A sensitive reversed-phase high-performance liquid chromatographic (RP-HPLC) assay with on-line extraction was developed for quantifying ertapenem in human cerebrospinal fluid (CSF). This assay is at least five times more sensitive than previously published ertapenem methods with a lower limit of quantitation at 0.025 microg/ml. In this assay, a CSF sample is extracted on-line using a RP extraction column and an aqueous acidic mobile phase (0.1% formic acid) to wash away polar endogenous materials, while ertapenem is retained on the column. Ertapenem is then back-flushed off the extraction column and directed to a RP analytical column using an acidic mobile phase with an organic modifier (acetonitrile/0.1% formic acid, 15:85 (v/v)) and detected using UV absorbance. The acidic mobile phase provided a sharper chromatographic peak and on-line extraction allowed large injection volumes (> or = 150 microl) of buffered CSF to be injected without compromising column integrity. These assay conditions were necessary to quantify ertapenem at levels expected to be found in human CSF (< 0.05 microg/ml). The method was successfully validated and implemented for a clinical study: intraday precision and accuracy of the CSF assay for calibration standards (0.025-10 microg/ml) and quality control samples (0.1, 0.5, and 2.5 microg/ml) were < 6.2% coefficient of variation and 96.8-104.0% of nominal concentration, respectively.  相似文献   

5.
A gradient reversed-phase HPLC assay has been developed to determine sodium ferulate (SF) in beagle dog plasma with tinidazole as an internal standard. Chromatographic separation was made on a C(18) column using 0.5% acetic acid and acetonitrile (80:20, v/v) as mobile phase. UV detection was performed at 320 nm. The calibration curve for SF was linear in the range of 0.05-10 microg/ml, and the achieved limit of quantification (LOQ) was 51.4 ng/ml. The results of linearity, within- and between-day precision, and accuracy demonstrate that this method is reliable, sensitive and sufficient for in vivo beagle dog pharmacokinetic (PK) studies of SF.  相似文献   

6.
A highly sensitive analytical method based on capillary zone electrophoresis (CZE) coupled with a laser-induced fluorescence (LIF) detector was explored for the analysis of [ -Pen2,5]enkephalin (DPDPE) in rat serum. DPDPE and the internal standard Phe-Leu-Glu-Glu-Ile (P9396) were extracted from serum samples with C18 solid-phase extraction disk cartridges, followed by derivatization with tetramethylrhodamine-5-isothiocyanate (TRITC) isomer G before introduction onto the capillary column. Complete resolution of DPDPE and the internal standard from other serum components was achieved within 20 min on a 140 cm×50 μm I.D. capillary column with borate buffer (25 mM, pH 8.3). With the current method, it is possible to detect 1.3E-18 mol of DPDPE on column. The results suggest that CZE-LIF is a promising method for the sensitive and specific quantitation of therapeutic peptides in biological matrices.  相似文献   

7.
A selective and sensitive high-performance liquid chromatographic assay for a novel cognitive enhancer, X9121 (I), and its mono N-oxide metabolite, XG696 (II), in dog plasma has been developed. Compounds I, II and internal standard (I.S.) were first extracted from dog plasma using a solid-phase Bond Elut Certify I 10-ml LRC reservoir extraction cartridge. Chromatographic separation of I, II and I.S. was conducted on a reversed-phase Zorbax Stable Bond cyano column. Ammonium acetate buffer (0.05 M, pH 6)-acetonitrile-triethylamine (75:25:0.1, v/v) was used as the mobile phase. Detection of all three compounds was by UV light absorbance at 313 nm. Using 0.5 ml of dog plasma for extraction, the minimum quantifiable limit was 10 ng/ml and the assay was linear from 10 to 5400 ng/ml. The coefficients of variation for intra-day precision ranged from 2.2 to 8.5% for I and from 2.5 to 9.8% for II. The coefficients of variation for the inter-day precision for these two compounds ranged from 2.6 to 9.0% and from 3.6 to 16.2%, respectively. The absolute percent differences for the accuracy results were within 11.0% of the spiked concentrations. Compounds I and II were stable in frozen plasma at −20°C for at least 67 days.  相似文献   

8.
A specific and reproducible HPLC method using a Chiral-AGP column and UV detection was developed for the evaluation of the pharmacokinetic profile of oxodipine enantiomers in dog and man. Each enantiomer was determined in plasma in the concentration range 1–400 ng/ml using the internal standard calibration method with linear regression analysis. After extraction of oxodipine and the internal standard at alkaline pH with diethyl ether—n-hexane (50:50, v/v), this method permitted the determination of each enantiomer at levels down to 10 ng/ml in dog plasma and 25 ng/ml in human plasma with sufficient accuracy (relative error <11%, n = 6) and precision (coefficient of variation <16%, n = 6). The extracted plasma volume was 500 μl and after evaporation of the organic phase, the dry residue was dissolved in 100 μl of water—2-propanol; an aliquot of 80 μl was injected into the HPLC system.  相似文献   

9.
A sensitive and selective LC-MS-MS method for the determination of DPC 423 (I), an antithrombotic agent, is described. This method used a solid-phase extraction from 0.1 ml plasma with an Isolute C(2) cartridge. HPLC separation was carried out on a YMC ODS-AQ C(18) column (50x2 mm) at a flow-rate of 300 microliter/min with an analysis time of 5 min. Compounds were eluted using a mobile phase of H(2)O/CH(3)CN/HCOOH: 66:34:0.1 (v/v/v), pH 4.0. A structural analogue of I was used as the internal standard to account for variations in recovery and instrument response. Mass spectrometric detection was carried out with a PE Sciex API III(+) triple quadrupole mass spectrometer equipped with a Turbo IonSpray source as the LC-MS interface. Good intra-day and inter-day assay precision (<10% CV) and accuracy (<10% difference) were observed over a concentration range of 0.005-2.5 microM in plasma. The extraction recoveries were approximately 90% and the method was found to be linear for the assay (r(2)>0.999). The method has been successfully applied to discovery and preclinical pharmacokinetic studies, including a dose range-finding study and toxicokinetic exposure studies in rat and dog.  相似文献   

10.
A stereoselective reversed-phase HPLC assay to determine S-(-) and R-(+) enantiomers of esmolol in human plasma was developed. The method involved liquid-liquid extraction of esmolol from human plasma, using S-(-)-propranolol as the internal standard, and employed 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The derivatized products were separated on a 5-microm reversed-phase C18 column with a mixture of acetonitrile/0.02 mol/L phosphate buffer (pH 4.5) (55:45, v/v) as mobile phase. The detection of esmolol derivatives was made at lambda=224 nm with UV detector. The assay was linear from 0.035 to 12 microg/ml for each enantiomer. The analytical method afforded average recoveries of 94.8% and 95.5% for S-(-)- and R-(+)-esmolol, respectively. For each enantiomer, the limit of detection was 0.003 microg/ml and the limit of quantification for the method was 0.035 microg/ml (RSD<14%). The reproducibility of the assay was satisfactory.  相似文献   

11.
A sensitive and rapid high-performance liquid chromatography (HPLC) method with solid-phase extraction (SPE) to simultaneously determine albiflorin and paeoniflorin in rat serum was described. Serum samples were pretreated with solid-phase extraction using Extract-Clean cartridges, and the extracts were analyzed by HPLC on a reversed-phase C(18) column and a mobile phase of acetonitrile-0.03% formic acid (17:83 (v/v)) with ultraviolet detection at 230 nm. Pentoxifylline was used as the internal standard (IS). The linear ranges of the calibration curves were 29-1450 ng/ml for albiflorin and 10-2000 ng/ml for paeoniflorin. The intra- and inter-day precisions (R.S.D.) were 相似文献   

12.
An LC-MS/MS method was developed to quantitate the potential antitumor agent halofuginone in plasma. The assay uses 0.2 ml of plasma; chlorohalofuginone internal standard; acetonitrile for protein precipitation; a Phenomenex SYNERGI 4 micro Polar RP 80A (4 microm, 100 mm x 2 mm) column; an isocratic mobile phase of methanol:water:formic acid (80:20:0.02, v/v/v); and positive-ion electrospray ionization with selective reaction monitoring detection. Halofuginone eluted at approximately 2.4 min, internal standard eluted at approximately 2.9 min, and no endogenous materials interfered with their measurement. The assay was accurate, precise, and linear between 0.1 and 100 ng/ml. Halofuginone could be quantitated in dog plasma for at least 24 h after an i.v. dose of 0.1mg/kg. The assay is being used in ongoing pharmacokinetic studies of halofuginone.  相似文献   

13.
A HPLC method was developed for determination of cimetidine in human plasma and urine. Plasma samples were alkalinized followed by liquid extraction with water-saturated ethyl acetate then evaporated under nitrogen. The extracts were reconstituted in mobile phase and injected onto a C(18) reversed-phase column; UV detection was set at 228 nm. Urine samples were diluted with an internal standard/mobile phase mixture (1:9) prior to injection. The lower limit of quantification in plasma and urine were 100 ng/ml and 10 microg/ml, respectively; intra- and inter-day coefficients of variation were 相似文献   

14.
A selective and sensitive high-performance liquid chromatography method has been developed and validated for determination of mitiglinide (MGN) in rat plasma using 2-(4-biphenylyl) propionic acid (BPA) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a C(18) column using acetonitrile and 0.02 mol/l KH(2)PO(4) buffer (pH 4.0) (45:55, v/v) as mobile phase delivered at 1.0 ml/min. The UV detector was set at 210 nm. The assay was linear over the range 0.1-20 microg/ml for MGN. The average extraction recoveries of MGN and BPA from rat plasma were 98.6 and 97.4%, respectively. The developed method has been applied to the pharmacokinetic study of MGN in rats.  相似文献   

15.
A sensitive and specific liquid chromatographic method using solid-phase extraction with Sep-pak cartridges has been developed for the determination of Casiopeina IIgly and validated over the linear range 2.5-50 microg/ml in rat plasma. The analysis was performed on a Symetry C(18) (5 microm) column with a Phenomenex C(18) precolumn. The mobile phase was methanol-water (58:42, v/v). The column effluent was monitored at 273 nm. The results showed that the assay is sensitive at 2.5 microg/ml. Maximum intra-day coefficient of variation was 11.47%. The recovery based upon addition of internal standard to rat plasma was 80.98%. The method was used to perform preclinical pharmacokinetic studies in rat plasma and was found to be satisfactory.  相似文献   

16.
A sensitive high-performance liquid chromatography-tandem mass spectrometry assay for thiocoraline, an anti-tumor depsipeptide, in mouse plasma is described. Echinomycin, a quinoxaline peptide, was used as an internal standard. Thiocoraline was recovered from the mouse plasma using protein precipitation with acetonitrile and followed by solid-phase extraction of the supernatant. The mobile phase consisted of methanol (0.1% formic acid)-water (0.1% formic acid) (90:10, v/v). The analytical column was a YMC C(18). The standard curve was linear from 0.1 to 50 ng/ml (R(2)>0.99). The lower limit of quantitation was 0.1 ng/ml. The assay was specific based on the multiple reaction monitoring transitions at m/z 1157-->215 and m/z 1101-->243 for thiocoraline and the internal standard, echinomycin, respectively. The mean intra- and inter-day assay accuracies remained below 5 and 12%, respectively, for all calibration standards and quality control (QC) samples. The intra- and inter-day assay precisions were less than 11.4 and 9.5% for all QC levels, respectively. The utility of the assay was demonstrated by a pharmacokinetic study of i.v. (bolus) thiocoraline on CD-1 mice. Thiocoraline was stable in mouse plasma in an ice-water bath for 6 h and for three freeze-thaw cycles. The reconstituted thiocoraline after extraction and drying sample process was stable in the autosampler for over 24 h. The assay was able to quantify thiocoraline in plasma up to 48 h following dose. Pharmacokinetic analysis showed that thiocoraline has distinct pharmacokinetic profiling when dosed in different formulation solutions. The assay is currently used to measure thiocoraline plasma concentrations in support of a project to develop a suitable formulation with a desirable pharmacokinetic profile.  相似文献   

17.
A simple, rapid and specific high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS) has been developed and validated for the determination of ketoconazole in human plasma. The method used diethyl ether to extract the ketoconazole and the internal standard (I.S.) R51012 from alkalinized plasma sample. The LC separation was on a C(18) column (50 x 3 mm, 5 microm) using acetonitrile-water-formic acid (75:25:1, v/v/v) mobile phase. The retention times were approximately 1.8 min for both ketoconazole and the I.S. The MS-MS detection was by monitoring 531.2-->82.1 (m/z) for ketoconazole, and 733.5-->460.2 (m/z) for the I.S. The dynamic range was from 20.0 to 10000 ng/ml based on 0.1 ml plasma, with linear correlation coefficient of > or =0.9985. The run time was 2.5 min/injection. The recoveries of ketoconazole and the I.S. were 102 and 106%, respectively. The precision and accuracy of the control samples were with the relative standard deviations (RSDs) of < or =4.4% (n=6) and the relative errors (REs) from -0.6 to 1.4% for intra-day assay, and < or =8.6% RSD (n=18) and -1.4 to 0.9% RE for inter-day assay. The partial volume tests demonstrated good dilution integrity. Three freeze-thaw cycles, keeping plasma samples at ambient for 24 h, storing extracted samples at ambient for 24 h, and storing frozen plasma samples at approximately -20 degrees C for up to 2 months did not show substantial effects.  相似文献   

18.
A facile, sensitive and highly specific HPLC method for assaying 1-(2-chloroethyl)-3-sarcosinamide-1-nitrosourea (SarCNU) in plasma has been developed. The drug was efficiently isolated from plasma by extraction with tert.-butyl methyl ether. A structurally related compound with similar physicochemical properties served as the internal standard (I.S.). Following evaporation of the organic solvent, the extract was reconstituted with 0.05 M ammonium acetate buffer, pH 5.0, and loaded onto a 4 μm Nova-Pak C18 column (15 cm×3.9 mm), which was preceded by a 7 μm Brownlee RP-18 precolumn (1.5 cm×3.2 mm). Chromatography was performed at ambient temperature using a mobile phase of methanol-0.1 M ammonium formate buffer, pH 3.7 (25:75, v/v). UV absorbance of the effluent was monitored at 240 nm. A flow-rate of 1.0 ml/min was used for analyzing mouse and dog plasma extracts. Under these conditions, the drug eluted at 4.0 min and was followed by the I.S. at 6.1 min. An automatic switching valve was employed to allow the precolumn to be flushed 1.5 min into the run, without interrupting the flow of the mobile phase to the analytical column, thereby preventing the apparent build-up of extractable, strongly retained, UV-absorbing components present in mouse and dog plasma. Operating in this manner, more than 100 samples could be analyzed during a day using a refrigerated autosampler for overnight injection. The method was readily adapted to the determination of SarCNU in human plasma by simply decreasing the eluent flow-rate to 0.6 ml/min, whereby SarCNU and the I.S. eluted at approximately 5.8 and 9.1 min, respectively. Furthermore, the switching valve was not necessary for the analysis of human plasma samples. With a 50-μl sample volume, the lowest concentration of SarCNU included in the plasma standard curves, 0.10 μg/ml, was quantified with a 7.8% R.S.D. (n=27) over a 2 month period. Plasma standards, with concentrations of 0.26 to 5.1 μg/ml, exhibited R.S.D. values ranging from 1.3 to 4.7%. Thermospray-ionization MS detection was used to definitively establish the specificity of the method. The sensitivity of the assay was shown by application to be more than adequate for characterizing the plasma pharmacokinetics of SarCNU in mice.  相似文献   

19.
A sensitive, specific and reproducible fluorescence high performance liquid chromatography (HPLC) assay has been developed for the separate or simultaneous measurement of AQ-13 (a candidate 4-aminoquinoline antimalarial), chloroquine (CQ), and their metabolites in whole blood. After liquid-solid extraction using commercially available extraction cartridges, these two aminoquinolines (AQs) and their metabolites were separated on C18 (Xterra RP18) columns using a mobile phase containing 60% borate buffer (20 mM, pH 9.0) and 40% acetonitrile with isocratic elution at a flow-rate of 1.0 ml/min. The assay uses a biologically inactive 8-chloro-4-aminoquinoline (AQ-18) as its internal standard (IS). There is a linear relationship between the concentrations of these AQs and the peak area ratio (ratio between the peak area of the AQ or metabolite and the peak area of the IS) on the chromatogram. Linear calibration curves with correlation coefficients > or = 0.997 (r2 > or = 0.995, p < 0.001) were obtained for AQ-13, CQ and their N-dealkylated metabolites. Reproducibility of the assay was excellent with coefficients of variation (CVs) < or = 3.8% for AQ-13 and its metabolites, and < or =2.5% for CQ and its metabolites. The sensitivity of the assay is 5 nM using 1.0 ml of blood and a 20 microl injection volume, and can be increased by using 5.0 ml of blood with an injection volume of 40 microl.  相似文献   

20.
Ezetimibe (Ezetrol) is a novel cholesterol lowering drug which disposition is not fully understood in man. We developed a selective and high-sensitive assay to measure serum concentration-time profiles, renal and fecal elimination of ezetimibe in pharmacokinetic studies. Ezetimibe glucuronide, the major metabolite of ezetimibe was determined by enzymatic degradation to the parent compound. Ezetimibe was measured after extraction with methyl tert-butyl ether using 4-hydroxychalcone as internal standard and liquid chromatography coupled via an APCI interface with tandem mass spectrometry (LC-MS/MS) for detection. The chromatography (column XTerra) MS, C(18), 2.1 mm x 100 mm, particle size 3.5 microm) was done isocratically with acetonitrile/water (60/40, v/v; flow rate 200 microl/min). The MS/MS analysis was performed in the negative ion mode (m/z transition: ezetimibe 408-271, internal standard 223-117). The validation ranges for ezetimibe and total ezetimibe were as follows: serum 0.0001-0.015 microg/ml and 0.001-0.2 microg/ml; urine and fecal homogenate 0.025-10 microg/ml and 0.1-20 mg/ml, respectively. The assay was successfully applied to measure ezetimibe disposition in two subjects genotyped for the hepatic uptake transporter SLCO1B1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号