首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells.Omentum consists of a variety of phenotypically and functionally distinctive cells. To understand the mechanism of tissue repair support by the omentum in more detail, we analyzed the cell subsets derived from the omentum on immune and inflammatory responses. Our data demonstrate that the omentum contains at least two groups of cells that support tissue repair, immunomodulatory myeloid derived suppressor cells and omnipotent stem cells that are indistinguishable from mesenchymal stem cells. Based on these data, we propose that the omentum is a designated organ for tissue repair and healing in response to foreign invasion and tissue damage.  相似文献   

2.
Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases. As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory diseases.  相似文献   

3.
增生性瘢痕是以皮肤损伤后成纤维细胞过度增殖为特征的一种病理改变,其发病机制尚不明确,目前没有有效的治疗方法。当皮肤组织损伤时,腱糖蛋白C(Tenascin-C,TN-C)具有多种不同的作用介导炎症和纤维化进程,并使组织有效修复。TN—C是细胞外基质中一个具有独特的六聚体结构的寡聚糖蛋白家族,TN—C一过性表达在器官形成期,在大多数成人组织不表达或表达极少。然而,在病理条件下TN—C表达增加,诸如炎症,伤口愈合和纤维化。TN—C参与胚胎形成、肿瘤发生及损伤修复过程有关,参与细胞黏附、增殖、迁徙、分化、细胞间相互作用以及细胞凋亡。黑色素瘤分化相关基因7/白介素24(MDA-7/IL-24)能选择性抑制瘢痕疙瘩中成纤维细胞的增殖,并诱导瘢痕疙瘩中成纤维细胞的凋亡,而对正常细胞无任何作用。MDA-7/IL-24很可能与瘢痕的形成有关。  相似文献   

4.
增生性瘢痕是以皮肤损伤后成纤维细胞过度增殖为特征的一种病理改变,其发病机制尚不明确,目前没有有效的治疗方法。当皮肤组织损伤时,腱糖蛋白C(Tenascin-C,TN-C)具有多种不同的作用介导炎症和纤维化进程,并使组织有效修复。TN-C是细胞外基质中一个具有独特的六聚体结构的寡聚糖蛋白家族,TN-C一过性表达在器官形成期,在大多数成人组织不表达或表达极少。然而,在病理条件下TN-C表达增加,诸如炎症,伤口愈合和纤维化。TN-C参与胚胎形成、肿瘤发生及损伤修复过程有关,参与细胞黏附、增殖、迁徙、分化、细胞间相互作用以及细胞凋亡。黑色素瘤分化相关基因7/白介素24(MDA-7/IL-24)能选择性抑制瘢痕疙瘩中成纤维细胞的增殖,并诱导瘢痕疙瘩中成纤维细胞的凋亡,而对正常细胞无任何作用。MDA-7/IL-24很可能与瘢痕的形成有关。  相似文献   

5.
Dying cells stimulate inflammation, and this response is thought to contribute to the pathogenesis of many diseases. Very little has been known, however, about how cell death triggers inflammation. We found here that the acute neutrophilic inflammatory response to cell injury requires the signaling protein myeloid differentiation primary response gene 88 (Myd88). Analysis of the contribution of Myd88-dependent receptors to this response revealed only a minor reduction in mice doubly deficient in Toll-like receptor 2 (Tlr2) and Tlr4 and normal responses in mice lacking Tlr1, Tlr3, Tlr6, Tlr7, Tlr9, Tlr11 or the interleukin-18 receptor (IL-18R). However, mice lacking IL-1R showed a markedly reduced neutrophilic inflammatory response to dead cells and tissue injury in vivo as well as greatly decreased collateral damage from inflammation. This inflammatory response required IL-1alpha, and IL-1R function was required on non-bone-marrow-derived cells. Notably, the acute monocyte response to cell death, which is thought to be important for tissue repair, was much less dependent on the IL-1R-Myd88 pathway. Also, this pathway was not required for the neutrophil response to a microbial stimulus. These findings suggest that inhibiting the IL-1R-Myd88 pathway in vivo could block the damage from acute inflammation that occurs in response to sterile cell death, and do so in a way that might not compromise tissue repair or host defense against pathogens.  相似文献   

6.

Background  

Wound healing is a complex process requiring the collaborative efforts of different tissues and cell lineages, and involving the coordinated interplay of several phases of proliferation, migration, matrix synthesis and contraction. Tissue damage also triggers a robust influx of inflammatory leukocytes to the wound site that play key roles in clearing the wound of invading microbes but also release signals that may be detrimental to repair and lead to fibrosis.  相似文献   

7.
The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a “critical-size defect” (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment.  相似文献   

8.
Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.  相似文献   

9.
Damage to neonatal and adult tissues always incites an influx of inflammatory neutrophils and macrophages. Besides clearing the wound of invading microbes, these cells are believed to be crucial coordinators of the repair process, acting both as professional phagocytes to clear wound debris and as a major source of wound growth factor signals. Here we report wound healing studies in the PU.1 null mouse, which is genetically incapable of raising the standard inflammatory response because it lacks macrophages and functioning neutrophils. Contrary to dogma, we show that these "macrophageless" mice are able to repair skin wounds with similar time course to wild-type siblings, and that repair appears scar-free as in the embryo, which also heals wounds without raising an inflammatory response. The growth factor and cytokine profile at the wound site is changed, cell death is reduced, and dying cells are instead engulfed by stand-in phagocytic fibroblasts. We also show that hyperinnervation of the wound site, previously believed to be a consequence of inflammation, is present in the PU.1 null wound, too.  相似文献   

10.
Numerous studies have examined wound healing and tissue repair after a complete tissue rupture and reported provisional matrix and scar tissue formation in the injury gap. The initial phases of the repair are largely mediated by the coagulation response and a principally extrinsic inflammatory response followed by type III collagen deposition to form scar tissue that may be later remodeled. In this study, we examine subfailure (Grade II sprain) damage to collagenous matrices in which no gross tissue gap is present and a localized concentration of provisional matrix or scar tissue does not form. This results in extracellular matrix remodeling that relies heavily upon type I collagen, and associated proteoglycans, and less heavily on type III scar tissue collagen. For instance, following subfailure tissue damage, collagen I and III expression was suppressed after 1 day, but by day 7 expression of both genes was significantly increased over controls, with collagen I expression significantly larger than type III expression. Concurrent with increased collagen expression were significantly increased expression of the collagen fibrillogenesis supporting proteoglycans fibromodulin, lumican, decorin, the large aggregating proteoglycan versican, and proteases cathepsin K and L. Interestingly, this remodeling process appears intrinsic with little or no inflammation response as damaged tissues show no changes in macrophage or neutrophils levels following injury and expression of the inflammatory markers, tumor necrosis factor-alpha and tartrate-resistant acid phosphatase were unchanged. Hence, since inflammation plays a large role in wound healing by inducing cell migration and proliferation, and controlling extracellular matrix scar formation, its absence leaves fibroblasts to principally direct tissue remodeling. Therefore, following a Grade II subfailure injury to the collagen matrix, we conclude that tissue remodeling is fibroblast-mediated and occurs without scar tissue formation, but instead with type I collagen fibrillogenesis to repair the tissue. As such, this system provides unique insight into acute tissue damage and offers a potentially powerful model to examine fibroblast behavior.  相似文献   

11.
文丹丹  王敏 《生命科学》2012,(4):350-353
支气管哮喘是一种临床上常见的呼吸道疾病,研究发现CD4+T细胞在哮喘的发病过程中起重要作用。Th22细胞是最近发现的一类CD4+T细胞功能亚群之一,其主要效应因子IL-22在炎症性疾病、组织修复、创口愈合及自身免疫性疾病中起重要作用,但其具体机制尚未完全清楚。从Th22的细胞因子来源、生物学特性、分化和调控出发,简要探讨Th22细胞与哮喘之间的可能关系。  相似文献   

12.
An anabolic response driven by osteoblasts is critical for the process of bone healing. Current evidence suggests that these osteoblasts may arise from multiple tissue types and cell lineages. Stem cells present in the bone marrow, periosteum, local soft tissues, vasculature, and/or circulation have been shown to have osteogenic potential. Transplanted cells from these sources have also been shown to incorporate into induced ectopic bone or repaired bone. While these experiments demonstrate the latent capacity of different lineages to assume an osteoblastic phenotype under pro-osteogenic conditions, the actual contribution of the different lineages to various repair situations in vivo remains unclear. This review explores the data arising from different bone formation and repair models. We propose a model suggesting that cells arising from the local tissues, particularly muscle cells, may play an important role in fracture repair under situations where the periosteal and/or bone marrow progenitor populations are depleted.  相似文献   

13.
Cellular senescence is a stress response that limits the proliferation of damaged cells by establishing a permanent cell cycle arrest. Different stimuli can trigger senescence but excessive production or impaired clearance of these cells can lead to their accumulation during aging with deleterious effects. Despite this potential negative side of cell senescence, its physiological role as a pro‐regenerative and morphogenetic force has emerged recently after the identification of programmed cell senescence during embryogenesis and during wound healing and limb regeneration. Here, we explored the conservation of tissue injury‐induced senescence in a model of complex regeneration, the zebrafish. Fin amputation in adult fish led to the appearance of senescent cells at the site of damage, and their removal impaired tissue regeneration. Despite many conceptual similarities, this tissue repair response is different from developmental senescence. Our results lend support to the notion that cell senescence is a positive response promoting tissue repair and homeostasis.  相似文献   

14.
Mechano Growth Factor (MGF) is derived from the insulin-like growth factor (IGF-I) but its sequence differs from the systemic IGF-I produced by the liver. MGF is expressed by mechanically overloaded muscle and is involved in tissue repair and adaptation. It is expressed as a pulse following muscle damage and involved in the activation of muscle satellite (stem) cells. These donate nuclei to the muscle fibers that are required for repair and for the hypertrophy processes which may have similar regulatory mechanisms. Muscles in the elderly are unable to upregulate MGF in response to exercise. This is also true in certain diseases and this helps to explain muscle loss in those conditions. There is evidence that MGF is a local tissue repair factor as well as a growth factor and that it has an important role in damage limitation and inducing repair in other post-mitotic tissues. As there is no cell replacement in these tissues there has to be an effective local cellular repair mechanism. With advancing years this seems to become deficient and there is an increased chance that the damaged cells will undergo cell death leading to progressive loss of tissue function.  相似文献   

15.
16.
The skin epidermis and its appendages provide a protective barrier that is impermeable to harmful microbes and also prevents dehydration. To perform their functions while being confronted with the physicochemical traumas of the environment, these tissues undergo continual rejuvenation through homeostasis, and, in addition, they must be primed to undergo wound repair in response to injury. The skin's elixir for maintaining tissue homeostasis, regenerating hair, and repairing the epidermis after injury is its stem cells, which reside in the adult hair follicle, sebaceous gland, and epidermis. Stem cells have the remarkable capacity to both self-perpetuate and also give rise to the differentiating cells that constitute one or more tissues. In recent years, scientists have begun to uncover the properties of skin stem cells and unravel the mysteries underlying their remarkable capacity to perform these feats. In this paper, I outline the basic lineages of the skin epithelia and review some of the major findings about mammalian skin epithelial stem cells that have emerged in the past five years.  相似文献   

17.
Clinical and experimental studies have highlighted the significance of inflammation in coordinating wound repair and regeneration.However,it remains challenging to control the inflammatory response and tolerance at systemic levels without causing toxicity to injured tissues.Mesenchymal stem cells(MSCs) possess potent immunomodulatory properties and facilitate tissue repair by releasing exosomes,which generate a suitable microenvironment for inflammatory resolution.Exosomes contain several effective bioactive molecules and act as a cell-cell communication vehicle to influence cellular activities in recipient cells.During this process,the horizontal transfer of exosomal microRNAs(miRNAs) to acceptor cells,where they regulate target gene expression,is of particular interest for understanding the basic biology of inflammation ablation,tissue homeostasis,and development of therapeutic approaches.In this review,we describe a signature of three specific miRNAs(miR-21,miR-146 a,and miR-181) present in human umbilical cord MSC-derived exosomes(MSC-EXO) identified microarray chip analysis and focus on the inflammatory regulatory functions of these immune-related miRNAs.We also discuss the potential mechanisms contributing to the resolution of wound inflammation and tissue healing.  相似文献   

18.
Repair of tissue after injury depends on the synthesis of a fibrous extracellular matrix to replace lost or damaged tissue. Newly deposited extracellular matrix is then re-modeled over time to emulate normal tissue. The extracellular matrix directs repair by regulating the behavior of the wide variety of cell types that are mobilized to the damaged area in order to rebuild the tissue. Acute inflammation, re-epithelialization, and contraction all depend on cell-extracellular matrix interactions and contribute to minimize infection and promote rapid wound closure. Matricellular proteins are up-regulated during wound healing where they modulate interactions between cells and the extracellular matrix to exert control over events that are essential for efficient tissue repair. Here, we discuss how the extracellular matrix changes during the stages of tissue repair, how matricellular proteins affect cell-extracellular matrix interactions, and how these proteins might be exploited for use therapeutically.  相似文献   

19.
Epidermal tissue repair represents a complex series of temporal and dynamic events resulting in wound closure. Matricellular proteins, not normally expressed in quiescent adult tissues, play a pivotal role in wound repair and associated extracellular matrix remodeling by modulating the adhesion, migration, intracellular signaling, and gene expression of inflammatory cells, pericytes, fibroblasts and keratinocytes. Several matricellular proteins show temporal expression during dermal wound repair, but the expression pattern of the recently identified matricellular protein, periostin, has not yet been characterized. The primary aim of this study was to assess whether periostin protein is present in healthy human skin or in pathological remodeling (Nevus). The second aim was to determine if periostin is expressed during dermal wound repair. Using immunohistochemistry, periostin reactivity was detected in the keratinocytes, basal lamina, and dermal fibroblasts in healthy human skin. In pathological nevus samples, periostin was present in the extracellular matrix. In excisional wounds in mice, periostin protein was first detected in the granulation tissue at day 3, with levels peaking at day 7. Periostin protein co-localized with α-smooth muscle actin-positive cells and keratinocytes, but not CD68 positive inflammatory cells. We conclude that periostin is normally expressed at the cellular level in human and murine skin, but additionally becomes extracellular during tissue remodeling. Periostin may represent a new therapeutic target for modulating the wound repair process.  相似文献   

20.
Aa robust inflammatory response to tissue damage and infection is conserved across almost all animal phyla. Neutrophils and macrophages, or their equivalents, are drawn to the wound site where they engulf cell and matrix debris and release signals that direct components of the repair process. This orchestrated cell migration is clinically important, and yet, to date, leukocyte chemotaxis has largely been studied in vitro. Here, we describe a genetically tractable in vivo wound model of inflammation in the Drosophila melanogaster embryo that is amenable to cinemicroscopy. For the first time, we are able to examine the roles of Rho-family small GTPases during inflammation in vivo and show that Rac-mediated lamellae are essential for hemocyte motility and Rho signaling is necessary for cells to retract from sites of matrix- and cell-cell contacts. Cdc42 is necessary for maintaining cellular polarity and yet, despite in vitro evidence, is dispensable for sensing and crawling toward wound cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号