首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A monoclonal antibody specific for Escherichia coli ribosomal protein L16 was prepared to test its effects on ribosome function and to locate L16 by immunoelectron microscopy. The antibody recognized L16 in 50 S subunits, but not in 70 S ribosomes. It inhibited association of ribosomal subunits at 10 mM Mg2+, but not at 15 mM Mg2+. Poly(U)-directed polyphenylalanine synthesis and peptidyltransferase activities were completely inhibited when the L16 antibody was bound to 50 S subunits at a molar ratio of 1. There was no inhibitory effect on the binding of elongation factors or on the associated GTPase activities. Fab fragments of the antibody gave the same result as the intact antibody. Chemical modification of the single histidine (His13) by diethyl pyrocarbonate destroyed antibody binding. Electron microscopy of negatively stained antibody subunit complexes showed antibody binding beside the central protuberance of the 50 S particle on the side away from the L7/L12 stalk and on or near the interface between the two subunits. This site of antibody binding is fully consistent with its biochemical effects that indicate that protein L16 is essential for the peptidyltransferase activity activity of protein biosynthesis and is at or near the subunit interface.  相似文献   

2.
Two Escherichia coli mutants lacking ribosomal protein L1, previously shown to display 40 to 60% reduced capacity for in vitro protein synthesis (Subramanian, A. R., and Dabbs, E. R. (1980) Eur. J. Biochem. 112, 425-430), have been used to study partial reactions of protein biosynthesis. Both the binding of N-acetyl-Phe-tRNA to ribosomes and the 6 to 8-fold stimulation of the elongation factor G (EF-G)-dependent GTPase reaction by mRNA plus tRNA, assayed in the presence of wild type 30 S subunits, were low with L1-deficient 50 S subunits. Addition of pure protein L1 to the assay restored both reactions to 100% of the control. By contrast, the basic EF-G GTPase reaction in the absence of mRNA and tRNA was not at all affected (mRNA alone had no effect). None of the following partial reactions were more than moderately modified by the lack of protein L1: binding to ribosomes of EF-G.GDP plus fusidic acid; the translocation reaction catalyzed by EF-G plus GTP; poly(U)-dependent binding to ribosomes of Phe-tRNAPhe (whether dependent on elongation factor Tu plus GTP or not); and the EF-Tu-dependent GTPase activity. It is concluded that protein L1 is involved in the interaction between ribosomes and peptidyl-tRNA (or tRNA) in the peptidyl site and consequently in the ribosomal GTPase activity depending on the simultaneous action of tRNA and EF-G.  相似文献   

3.
Two monoclonal antibodies with specificities for Escherichia coli 50 S ribosomal subunit protein L7/L12 were isolated. The antibodies and Fab fragments thereof were purified by affinity chromatography using solid-phase coupled L7/L12 protein as the immunoadsorbent. The two antibodies were shown to recognize different epitopes; one in the N-terminal and the other in the C-terminal domain of protein L7/L12. Both intact antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor EF-G to the ribosome. Ratios of antibody to ribosome of 4:1 or less were effective in inhibiting these activities. Neither antibody prevented the association of ribosomal subunits to form 70 S ribosomes. The Fab fragments showed similar effects.  相似文献   

4.
5.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

6.
The antibiotic thiostrepton, a thiazole-containing peptide, inhibits translation and ribosomal GTPase activity by binding directly to a limited and highly conserved region of the large subunit ribosomal RNA termed the GTPase center. We have previously used a filter binding assay to examine the binding of ribosomal protein L11 to a set of ribosomal RNA fragments encompassing the Escherichia coli GTPase center sequence. We show here that thiostrepton binding to the same RNA fragments can also be detected in a filter binding assay. Binding is relatively independent of monovalent salt concentration and temperature but requires a minimum Mg2+ concentration of about 0.5 mM. To help determine the RNA features recognized by L11 and thiostrepton, a set of over 40 RNA sequence variants was prepared which, taken together, change every nucleotide within the 1051 to 1108 recognition domain while preserving the known secondary structure of the RNA. Binding constants for L11 and thiostrepton interaction with these RNAs were measured. Only a small number of sequence variants had more than fivefold effects on L11 binding affinities, and most of these were clustered around a junction of helical segments. These same mutants had similar effects on thiostrepton binding, but more than half of the other sequence changes substantially reduced thiostrepton binding. On the basis of these data and chemical modification studies of this RNA domain in the literature, we propose that L11 makes few, if any, contacts with RNA bases, but recognizes the three-dimensional conformation of the RNA backbone. We also argue from the data that thiostrepton is probably sensitive to small changes in RNA conformation. The results are discussed in terms of a model in which conformational flexibility of the GTPase center RNA is functionally important during the ribosome elongation cycle.  相似文献   

7.
C A Vandenberg  M Montal 《Biochemistry》1984,23(11):2339-2347
The occurrence of a guanine nucleotide binding protein activated by squid rhodopsin was established by examination of GTPase activity, guanine nucleotide binding, and cholera toxin catalyzed labeling of squid photoreceptor membranes. Purified squid (Loligo opalescens) photoreceptors exhibited GTPase activity that increased 3-4-fold by illumination. Half-maximal GTPase activity was observed when 2% of the rhodopsin was photoconverted to metarhodopsin. The Km of the light-regulated activity was 1 microM GTP. Binding of the hydrolysis-resistant GTP analogue guanosine 5'-(beta, gamma-imidotriphosphate) [Gpp(NH)p] was enhanced greater than 10 times by illumination. A protein, Mr 44 000, was identified as a component of the light-activated guanine nucleotide binding protein/GTPase through its specific labeling with [32P]NAD catalyzed by cholera toxin: light increased the extent of 32P incorporation 7-fold. The addition of ATP to the membrane suspension enhanced labeling, while guanine nucleotides inhibited labeling with the relative potency GTP gamma S much greater than GDP greater than GTP greater than Gpp(NH)p. The 44 000-dalton protein was membrane bound irrespective of variations in ionic strength and divalent ion concentration over a wide range. These results suggest that a G protein, which incorporates both GTP binding and hydrolysis functions, is intimately involved in the visual process of invertebrate photoreceptors.  相似文献   

8.
Low-density membrane fragments (domains) were separated from the bulk of plasma membranes of human embryonic kidney (HEK)293 cells expressing a delta-opioid (DOP) receptor-Gi1alpha fusion protein by drastic homogenization and flotation on equilibrium sucrose density gradients. The functional activity of trimeric G proteins and capacity of the DOP receptor to stimulate both the fusion protein-linked Gi1alpha and endogenous pertussis-toxin sensitive G proteins was measured as d-Ala2, d-Leu5-enkephalin stimulated high-affinity GTPase or guanosine-5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding. The maximum d-Ala2-d-Leu5 enkephalin (DADLE)-stimulated GTPase was two times higher in low-density membrane fragments than in bulk of plasma membranes; 58 and 27 pmol/mg/min, respectively. The same difference was obtained for [35S]GTPgammaS binding. Contrarily, the low-density domains contained no more than half the DOP receptor binding sites (Bmax = 6.6 pmol/mg versus 13.6 pmol/mg). Thus, when corrected for expression levels of the receptor, low-density domains exhibited four times higher agonist-stimulated GTPase and [35S]GTPgammaS binding than the bulk plasma membranes. The regulator of G protein signaling RGS1, enhanced further the G protein functional activity but did not remove the difference between domain-bound and plasma membrane pools of G protein. The potency of the agonist in functional studies and the affinity of specific [3H]DADLE binding to the receptor were, however, the same in both types of membranes - EC50 = 4.5 +/- 0.1 x 10(-8) and 3.2 +/- 1.4 x 10(-8) m for GTPase; Kd = 1.2 +/- 0.1 and 1.3 +/- 0.1 nm for [3H]DADLE radioligand binding assay. Similar results were obtained when sodium bicarbonate was used for alkaline isolation of membrane domains. By contrast, detergent-insensitive membrane domains isolated following treatment of cells with Triton X100 exhibited no DADLE-stimulated GTPase or GTPgammaS binding. Functional coupling between the DOP receptor and cognate G proteins was also blocked by high-energy ultrasound and repeated freezing-thawing. Our data indicate, for the first time, that membrane domains isolated using 'detergent-free' procedures exhibit higher efficiency of coupling between a G protein-coupled receptor and its corresponding G protein(s) than bulk plasma membranes. Detergent-extraction diminishes these interactions, even when the receptor and G proteins are physically tethered together.  相似文献   

9.
GTPase activity of a bacterial SRP-like complex.   总被引:2,自引:0,他引:2       下载免费PDF全文
We have recently identified a protein (SRPM54) in Mycoplasma mycoides homologous to SRP54, a subunit of the mammalian signal recognition particle (SRP). This protein forms a complex with a mycoplasma RNA related to the RNA component of SRP. We have now demonstrated that the protein has an intrinsic GTPase activity in vitro and kinetic parameters for the enzymatic reaction have been determined. The GTPase activity was not significantly affected by the presence of the mycoplasma SRP RNA. Different regions of the SRPM54 protein were expressed as recombinant proteins in E. coli and were purified to near homogeneity. On the basis of the properties of these SRPM54 fragments two different functional domains of the protein could be distinguished. An N-terminal part was found to contain the GTPase activity and this domain had approximately the same kinetic properties as the full-length protein. Another domain corresponding to a C-terminal fragment contained the RNA binding activity as shown using an assay based on the retention of RNA-protein complexes to nitrocellulose filters.  相似文献   

10.
It has recently been observed that GTP mediates Ca2+ release from internal Ca2+ stores. In contrast to effects on permeabilized cells, GTP-dependent Ca2+ release in isolated microsomes requires the presence of polyethylene glycol (PEG). We have investigated the effects of PEG on microsomal GTPase activity and report that PEG stimulates a high-affinity (Km = 0.9 microM) GTPase. The effects of PEG reflect an increase in the Vmax of this activity; no effects on Km were observed. The concentration dependence for PEG-dependent stimulation of the high-affinity GTPase exactly mimicked that for GTP-dependent Ca2+ release. The stimulation of GTP hydrolysis by PEG was specific for the microsome fraction; only small effects were obtained with plasma membrane or cytosol fractions. As observed for GTP-dependent Ca2+ release, the microsomal PEG-stimulated GTPase was competitively inhibited by the GTP analog GTP gamma S (Ki = 60 nM). It is proposed that the PEG-stimulated GTPase may represent an intrinsic activity of the guanine nucleotide binding protein involved in the regulation of reticular Ca2+ fluxes.  相似文献   

11.
In the previous paper, we reported the identification of a 74-kDa G-protein that co-purifies with the alpha 1-adrenergic receptor following ternary complex formation. We report here on the purification and characterization of this 74-kDa G-protein (termed Gh) isolated de novo from rat liver membranes. After solubilization of rat liver membranes with the detergent sucrose monolaurate, Gh was isolated by sequential chromatography using heparin-agarose, Ultrogel AcA 34, hydroxylapatite, and heptylamine-Sepharose columns. The protein, thus isolated, is not a substrate for cholera or pertussis toxin but displays GTPase activity (turnover number, 3-5 min-1) and high-affinity guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding (half-maximal binding = 0.25-0.3 microM), which is Mg2(+)-dependent and saturable. The relative order of nucleotide binding by Gh is GTP gamma S greater than GTP greater than GDP greater than ITP much much greater than ATP greater than or equal to adenyl-5'-yl imidodiphosphate, which is similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, specific alpha 1-agonist-stimulated GTPase (turnover number, 10-15 min-1) and GTP gamma S binding activity could be demonstrated after reconstitution of purified Gh with partially purified alpha 1-adrenergic receptor into phospholipid vesicles. The alpha 1-agonist stimulation of GTP gamma S binding and GTPase activity was inhibited by the alpha-antagonist phentolamine. A 50-kDa protein co-purifies with the 74-kDa G-protein. This protein does not bind guanine nucleotides and may be a subunit (beta-subunit) of Gh. These findings indicate that Gh is a G-protein that functionally couples to the alpha 1-adrenergic receptor.  相似文献   

12.
Previous results from our laboratory showed that GH(4)C(1) cells with low-cholesterol cell content had increased adenylyl cyclase (AC) activity with a parallel increase in G protein alpha subunits associated to the plasma membrane. This effect was directly related to mevalonate availability. In the present report, we characterized the high-affinity GTPase activity present in GH(4)C(1) cell membranes and studied its regulation by cholesterol cell content. The high-affinity GTPase activity, measured as the [gamma32P]GTP hydrolysis rate, was both time-dependent and protein concentration-dependent. Cultured cells with lipoprotein-deficient serum (LPDS) showed decreased cholesterol cell content and decreased GTPase activity. The kinetic analysis, as interpreted by Lineweaver-Burk plots, indicated that low-cholesterol cell content had no effect on the apparent affinity for GTP, but resulted in a 47% decrease in the maximal velocity of the reaction. Addition of 25-hydroxycholesterol (25-HC), an inhibitor of the expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and synthetase to cells in LPDS, further decreased GTPase activity in a dose-dependent manner. This effect was reverted by exogenous cholesterol, but not by mevalonate. Studies with bacterial toxins revealed that neither cholera toxin (CTX) nor pertussis toxins (PTX) were able to revert the inhibition produced by low-cholesterol cell content. These results allowed us to postulate that cholesterol modulates GTPase activity in both Gs and Gi protein families. To analyse further the mechanism of modulation of GTPase activity by cholesterol cell content, [35S]GTPgammaS binding in membranes of GH(4)C(1) cells was studied. Changes in cholesterol cell content did not have any effect on GTP binding. Data demonstrated that high-affinity GTPase activity in plasma membrane of GH(4)C(1) cells is direct stimulated by cholesterol cell content and not by mevalonate availability. This example provides a mechanism by which cholesterol cell content can modulate signal transduction mediating by G proteins.  相似文献   

13.
Era is a highly conserved GTPase essential for bacterial growth. The N-terminal part of Era contains a conserved GTPase domain, whereas the C-terminal part of the protein contains an RNA- and membrane-binding domain, the KH domain. To investigate whether the binding of Era to 16S rRNA and membrane requires its GTPase activity and whether the GTPase domain is essential for these activities, the N- and C-terminal parts of the Streptococcus pneumoniae Era - Era-N (amino acids 1-185) and Era-C (amino acids 141-299), respectively - were expressed and purified. Era-C, which had completely lost GTPase activity, bound to the cytoplasmic membrane and 16S rRNA. In contrast, Era-N, which retained GTPase activity, failed to bind to RNA or membrane. These results therefore indicate that the binding of Era to RNA and membrane does not require the GTPase activity of the protein and that the RNA-binding domain is an independent, functional domain. The physiological effects of the overexpression of Era-C were assessed. The Escherichia coli cells overexpressing Era and Era-N exhibited the same growth rate as wild-type E. coli cells. In contrast, the E. coli cells overexpressing Era-C exhibited a reduced growth rate, indicating that the overexpression of Era-C inhibits cell growth. Furthermore, overexpression of era-N and era-C resulted in morphological changes. Finally, purified Era and Era-C were able to bind to poly(U) RNA, and the binding of Era to poly(U) RNA was significantly inhibited by liposome, as the amount of Era bound to the RNA decreased proportionally with the increase of liposome in the assay. Therefore, this study provides the first biochemical evidence that both binding sites are overlapping. Together, these results indicate that the RNA- and membrane-binding domain of Era is a separate, functional entity and does not require the GTPase activity or the GTPase domain of the protein for activity.  相似文献   

14.
A trucated human c-Ha-Ras protein that lacks the C-terminal 18 amino acid residues and the truncated Ras protein with the amino acid substitution Gly Val in position 12 were prepared by anE. coli overexpression system. The truncated Ras protein showed the same guanine-nucleotide binding activity and GTPase activity as those of the full-length Ras protein. Further, the same extent of GTPase activity enhancement due to GTPase-activating protein was observed for the truncated and full-length Ras proteins. In fact, two-dimensional proton NMR analyses indicated that the tertiary structure of the truncated Ras protein (GDP-bound or GMPPNP-bound) was nearly the same as that of the corresponding catalytic domain of the full-length Ras protein. Moreover, a conformational change around the effector region upon GDP GMPPNP exchange occurred in the same manner for both proteins. These observations indicate that the C-terminal flanking region (18 amino acid residues) of the Ras protein does not appreciably interact with the catalytic domain. Therefore, the truncated Ras protein is suitable for studying the molecular mechanism involved in the GTPase activity and the interaction with the GTPase-activating protein. On the other hand, an active form of the truncated Ras protein, unlike that of the full-length Ras protein, did not induce neurite outgrowth of rat pheochromocytoma PC12 cells. Thus, membrane anchoring of the Ras protein through its C-terminal four residues is not required for the interaction of Ras and GAP, but may be essential for the following binding of the Ras-GAP complex with the putative downstream target.  相似文献   

15.
Magnetic bacteria produce intracellular vesicles that envelope single domain magnetite crystals. Although many proteins are present in this intracellular vesicle membrane, five are specific to this membrane. A 16-kDa protein, designated Mms16, is the most abundant of the magnetosome-specific proteins, and to establish its function we cloned and sequenced its gene from Magnetospirillum magneticum AMB-1. This was achieved by determination of the N-terminal amino acid sequence of the protein following two dimensional polyacrylamide gel electrophoresis, and sequencing of the gene was performed by gene walking using anchored polymerase chain reaction. Mms16 contains a putative ATP/GTP binding motif (P-loop). Recombinant Mms16 with a hemagglutinin tag, was expressed in Escherichia coli and purified. Recombinant Mms16 protein could bind GTP and showed GTPase activity. GTP was the preferred substrate for Mms16-catalyzed nucleotide triphosphate hydrolysis. These results suggest that a novel protein specifically localized on the magnetic particle membrane, Mms16, is a GTPase. Mms16 protein showed similar characteristics to small GTPases involved in the formation of intracellular vesicles. Furthermore, addition of the GTPase inhibitor AlF(4)- also inhibited magnetic particle synthesis, suggesting that GTPase is required for magnetic particles synthesis.  相似文献   

16.
The product of the protooncogenic ras gene (p21N ras) exhibits a weak GTPase activity. A significant increase in the GTPase activity associated with p21N ras protein was obtained by using glycerol in the assay mixture. Of the several metal ions tested, only Mg++ and Mn++ are effective divalent cations that support the GTPase activity of p21N ras protein. p21N ras protein exhibits higher GTPase activity and yields higher [3H] GDP binding in the presence of MnCl2 than with MgCl2. Optimal GTPase and [3H] GDP binding are obtained at micromolar concentrations of MgCl2 or MnCl2. Concentrations in the millimolar range of either MgCl2 or MnCl2 are inhibitory to the GTPase activity, whereas [3H] GDP binding was not affected.  相似文献   

17.
Signal output from receptor-G-protein-effector modules is a dynamic function of the nucleotide exchange activity of the receptor, the GTPase-accelerating activity of GTPase-activating proteins (GAPs), and their interactions. GAPs may inhibit steady-state signaling but may also accelerate deactivation upon removal of stimulus without significantly inhibiting output when the receptor is active. Further, some effectors (e.g., phospholipase C-beta) are themselves GAPs, and it is unclear how such effectors can be stimulated by G proteins at the same time as they accelerate G protein deactivation. The multiple combinations of protein-protein associations and interacting regulatory effects that allow such complex behaviors in this system do not permit the usual simplifying assumptions of traditional enzyme kinetics and are uniquely subject to systems-level analysis. We developed a kinetic model for G protein signaling that permits analysis of both interactive and independent G protein binding and regulation by receptor and GAP. We evaluated parameters of the model (all forward and reverse rate constants) by global least-squares fitting to a diverse set of steady-state GTPase measurements in an m1 muscarinic receptor-G(q)-phospholipase C-beta1 module in which GTPase activities were varied by approximately 10(4)-fold. We provide multiple tests to validate the fitted parameter set, which is consistent with results from the few previous pre-steady-state kinetic measurements. Results indicate that (1) GAP potentiates the GDP/GTP exchange activity of the receptor, an activity never before reported; (2) exchange activity of the receptor is biased toward replacement of GDP by GTP; (3) receptor and GAP bind G protein with negative cooperativity when G protein is bound to either GTP or GDP, promoting rapid GAP binding and dissociation; (4) GAP indirectly stabilizes the continuous binding of receptor to G protein during steady-state GTPase hydrolysis, thus further enhancing receptor activity; and (5) receptor accelerates GDP/GTP exchange primarily by opening an otherwise closed nucleotide binding site on the G protein but has minimal effect on affinity (K(assoc) = k(assoc)/k(dissoc)) of G protein for nucleotide. Model-based simulation explains how GAP activity can accelerate deactivation >10-fold upon removal of agonist but still allow high signal output while the receptor is active. Analysis of GTPase flux through distinct reaction pathways and consequent accumulation of specific GTPase cycle intermediates indicate that, in the presence of a GAP, the receptor remains bound to G protein throughout the GTPase cycle and that GAP binds primarily during the GTP-bound phase. The analysis explains these behaviors and relates them to the specific regulatory phenomena described above. The work also demonstrates the applicability of appropriately data-constrained system-level analysis to signaling networks of this scale.  相似文献   

18.
Xie  Linlin  Ju  Zhao  Zhong  Chaojie  Wu  Yingjun  Zan  Yuxing  Hou  Wei  Feng  Yong 《中国病毒学》2021,36(1):85-94
The human myxovirus resistance 2(Mx2/Mx B) protein, a member of interferon(IFN)-inducible dynamin-like large GTPases, restricts a number of virus infections. Inhibition of these viruses occurs at poorly-defined steps after viral entry and has a common requirement for Mx B oligomerization. However, the GTPase activity is essential for the anti-viral effects of Mx B against herpesviruses and HBV but not HIV-1. To understand the role of Mx B GTPase activity, including GTP binding and GTP hydrolysis, in restriction of HIV-1 infection, we genetically separated these two functions and evaluated their contributions to restriction. We found that both the GTP binding and hydrolysis function of Mx B involved in the restriction of HIV-1 replication. The GTPase activity of Mx B contributed to its nuclear location, interaction with nucleoporins(NUPs) and HIV-1 capsids. Furthermore, Mx B disrupted the association between NUPs and HIV-1 cores dependently upon its GTPase activity. The function of GTPase activity was therefore multi-faceted, led to fundamentally distinct mechanisms employed by wild-type Mx B and GTPase activity defective Mx B mutations to restrict HIV-1 replication.  相似文献   

19.
The E. coli ribosomal proteins L12 and its N-acetylated form L7 were cleaved into an N-terminal and C-terminal fragment of roughly comparable size. The selective cleavage at the lone arginine residue was accomplished by trypsin treatment of the citraconylated proteins, followed by removal of the citraconyl moieties. These fragments, both separately and in combination, were incapable of reconstituting elongation factor G (EF-G) dependent GTPase of CsCl ribosomal cores supplemented with L10. However, incubation of cores containing L10 with the N-terminal fragment prevented the reconstitution of GTPase activity by intact L7/L12. No inhibition was observed when CsCl cores lacking L10 were incubated with the N-terminal fragment followed by addition of a preincubated mixture of L7/L12 and L10. The results indicate that the N-terminal part of L7/L12 is responsible for its ability to bind to 50S ribosomes and that L7/L12 together with L10 form a protein cluster on the ribosome.  相似文献   

20.
The photoreceptor-specific G protein transducin acts as a molecular switch, stimulating the activity of its downstream effector in its GTP-bound form and inactivating the effector upon GTP hydrolysis. This activity makes the rate of transducin GTPase an essential factor in determining the duration of photoresponse in vertebrate rods and cones. In photoreceptors, the slow intrinsic rate of transducin GTPase is accelerated by the complex of the ninth member of the regulators of G protein signaling family with the long splice variant of type 5 G protein beta subunit (RGS9.Gbeta5L). However, physiologically rapid GTPase is observed only when transducin forms a complex with its effector, the gamma subunit of cGMP phosphodiesterase (PDEgamma). In this study, we addressed the mechanism by which PDEgamma regulates the rate of transducin GTPase. We found that RGS9.Gbeta5L alone has a significant ability to activate transducin GTPase, but its affinity for transducin is low. PDEgamma acts by enhancing the affinity between activated transducin and RGS9.Gbeta5L by more than 15-fold, which is evident both from kinetic measurements of transducin GTPase rate and from protein binding assays with immobilized transducin. Furthermore, our data indicate that a single RGS9.Gbeta5L molecule is capable of accelerating the GTPase activity of approximately 100 transducin molecules/s. This rate is faster than the rates reported previously for any RGS protein and is sufficient for timely photoreceptor recovery in both rod and cone photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号