首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An examination of Autographa californica nuclear polyhedrosis virus DNA revealed the presence of five interspersed regions, rich in EcoRI restriction sites, which shared homologous sequences. These homologous regions (hr), designated hr1 to hr5, occur at or near the following EcoRI fragment junctions: hr1EcoRI-B—EcoRI-I (0.0 map units); hr2, EcoRI-A—EcoRI-J (19.8 map units); hr3, EcoRI-C—EcoRI-G (52.9 map units); hr4, EcoRI-Q—EcoRI-L (69.8 map units); and hr5, EcoRI-S—EcoRI-X (88.0 map units). Four of these regions were identified, by cross-blot hybridization of HindIII-restricted A. californica nuclear polyhedrosis virus DNA, to be within the HindIII-A/B, -F, -L, and -Q fragments. The location of these regions and the identification of a fifth homologous region were confirmed, and their characterization was facilitated, by using two plasmids with HindIII-L or -Q fragment insertions, which contained the homologous regions hr2 and hr5, respectively. The sizes of the homologous regions were about 800 base pairs for hr2, 500 base pairs for hr5, and less than 500 base pairs for hr1, hr3, and hr4. A set of small EcoRI fragments (EcoRI minifragments) which ranged in size from 225 to 73 base pairs were detected in A. californica nuclear polyhedrosis virus DNA and HindIII-L and -Q fragments by polyacrylamide gel analysis. Some of the minifragments in viral DNA were present in extramolar amounts and corresponded in size to some of the minifragments present in HindIII-L and -Q. Clones of some of the EcoRI minifragments were used as probes in hybridizations to digests of viral DNA and of HindIII-L and -Q. The hybridization data, obtained under various levels of stringency, suggested that there was a degree of mismatching between the sequences which were responsible for the homology.  相似文献   

2.
Chloroplast DNA variation in pearl millet and related species   总被引:4,自引:0,他引:4  
Clegg MT  Rawson JR  Thomas K 《Genetics》1984,106(3):449-461
The evolution of specific regions of the chloroplast genome was studied in five grass species in the genus Pennisetum, including pearl millet, and one species from a related genus (Cenchrus). Three different regions of the chloroplast DNA were investigated. The first region included a 12-kilobase pair (kbp) EcoRI fragment containing the 23S, 16S and 5S ribosomal RNA genes, which is part of a larger duplicated region of reverse orientation. The second region was contained in a 21-kbp Sa/I fragment, which spans the short single-copy sequence separating the two reverse repeat structures and which overlaps the duplicated copies of the 12-kbp Eco RI fragment. The third region was a 6-kbp EcoRI fragment located in the large single-copy region of the chloroplast genome. Together these regions account for slightly less than 25% of the chloroplast genome. Each of these DNA fragments was cloned and used as hybridization probes to determine the distribution of homologous DNA fragments generated by various restriction endonuclease digests.—A survey of 12 geographically diverse collections of pearl millet showed no indication of chloroplast DNA sequence polymorphism, despite moderate levels of nuclear-encoded enzyme polymorphism. Interspecific and intergeneric differences were found for restriction endonuclease sites in both the small and the large single-copy regions of the chloroplast genome. The reverse repeat structure showed identical restriction site distributions in all materials surveyed. These results suggest that the reverse repeat region is differentially conserved during the evolution of the chloroplast genome.  相似文献   

3.
Sequences in the cloned Drosophila melanogaster rDNA fragments described by Dawid et al. (1978) were compared by heteroduplex mapping. The nontranscribed spacer regions in all fragments are homologous but vary in length. Deletion loops were observed at variable positions in the spacer region suggesting that spacers are internally repetitious.Many rDNA repeats in D. melanogaster have a 28 S gene interrupted by a region named the ribosomal insertion. Insertions of 0.5, 1 and 5 kb were found in repeat-length EcoRI fragments. These DNA regions, named type 1 insertions, are homologous at their right ends. Although 1 kb insertions are quite precisely twice as large as 0.5 kb insertions they do not represent a duplication of the shorter sequence. Some insertions have at least one EcoRI site and therefore yield EcoRI fragments which are only part of a repeat. The sequences in two cloned right-hand partial insertion sequences are homologous, but the sequences in two lefthand partial insertions are not. None of the EcoRI-restrictable insertion sequences has any homology to any part of type 1 insertions; they are thus grouped together as type 2. Evidence for insertion sequences of at least two types in uncloned rDNA was obtained by annealing a cloned fragment with a 1 kb insertion to genomic rDNA. About 15% of the rDNA repeats show substitution type loops between the 1 kb type 1 insertion derived from the cloned fragment and type 2 insertions in the rDNA.  相似文献   

4.
Despite the fact that its DNA carries six EcoRI cleavage sites, bacteriophage T5 is able to grow on an EcoRI restricting host, suggesting that it specifies a restriction protection system. In the hope of identifying this protection system, mutants of T5 have been isolated which are unable to grow on an EcoRI restricting host. Analysis of the DNA of such mutants shows that they have each acquired two new EcoRI sites per molecule as a consequence of a single EcoRI site (ris) mutation located in the terminally repetitious, first step transfer (FST) region of the genome. The EcoRI sites generated by the ris mutations differ from the natural EcoRI sites in that the latter are situated on the second step transfer (SST) DNA, which suggests that the in vivo sensitivity of ris mutants is a consequence of having an EcoRI site on the FST DNA. This is understandable, if the hypothetical restriction protection genes are also located on the FST DNA. While expression of these genes would protect natural sites on the SST DNA, the ris sites would, on the contrary, enter an environment in which the protection, products had not yet been synthesized.Construction of double and triple ris mutants has allowed the ordering of the ris sites and the construction of an EcoRI restriction map of the FST region. In addition, the ris mutants allow estimation of the size of the terminal repetition of T5 DNA as 5.9 × 106 to 6.0 × 106 daltons. Correlation of the physical map of the FST region with the already established genetic map of this region allows orientation of the pre-early genes on the genetic and physical maps, and approximate localization of two amber mutations on the physical map.  相似文献   

5.
Fragments of rDNA3 from Drosophila melanogaster produced by the restriction endonuclease EcoRI were cloned in the form of recombinant plasmids in Escheriehia coli. Maps were prepared showing the location of the coding regions and of several restriction endonuclease sites. Most rDNA repeats have a single EcoRI site in the 18 S gene region. Thus, 19 of 24 recombinant clones contained a full repeat of rDNA. Ten repeats with continuous 28 S genes and repeats containing insertions in the 28 S gene of 0.5, 1 and 5 kb were isolated. The 0.5 and 1 kb insertion sequences are homologous to segments of the 5 kb insertions; because of this homology they are grouped together and identified as type 1 insertions. Four recombinant clones contain an rDNA fragment that corresponds to only a portion of a repeating unit. In these fragments the 28 S gene is interrupted by a sequence which had been cleaved by EcoRI. The interrupting sequences in these clones are not homologous to any portion of type 1 insertions and are therefore classified as type 2. In one of the above clones the 28 S gene is interrupted at an unusual position; such a structure is rare or absent in genomic rDNA from the fly. Another unusual rDNA fragment was isolated as a recombinant molecule. In this fragment the entire 18 S gene and portions of the spacer regions surrounding it are missing from one repeat. A molecule with the same structure has been found in uncloned genomic rDNA by electron microscopic examination of RNA/DNA hybrids.  相似文献   

6.
Thirteen Rhizobium leguminosarum strains previously reported as H2-uptake hydrogenase positive (Hup+) or negative (Hup) were analyzed for the presence and conservation of DNA sequences homologous to cloned Bradyrhizobium japonicum hup-specific DNA from cosmid pHU1 (M. A. Cantrell, R. A. Haugland, and H. J. Evans, Proc. Natl. Acad. Sci. USA 80:181-185, 1983). The Hup phenotype of these strains was reexamined by determining hydrogenase activity induced in bacteroids from pea nodules. Five strains, including H2 oxidation-ATP synthesis-coupled and -uncoupled strains, induced significant rates of H2-uptake hydrogenase activity and contained DNA sequences homologous to three probe DNA fragments (5.9-kilobase [kb] HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) from pHU1. The pattern of genomic DNA HindIII and EcoRI fragments with significant homology to each of the three probes was identical in all five strains regardless of the H2-dependent ATP generation trait. The restriction fragments containing the homology totalled about 22 kb of DNA common to the five strains. In all instances the putative hup sequences were located on a plasmid that also contained nif genes. The molecular sizes of the identified hup-sym plasmids ranged between 184 and 212 megadaltons. No common DNA sequences homologous to B. japonicum hup DNA were found in genomic DNA from any of the eight remaining strains showing no significant hydrogenase activity in pea bacteroids. These results suggest that the identified DNA region contains genes essential for hydrogenase activity in R. leguminosarum and that its organization is highly conserved within Hup+ strains in this symbiotic species.  相似文献   

7.
This report is an analysis of cross-hybridizing sequences found within the 28 superhelical (SH) DNAs of the multipartite genome of the polydnavirus Campoletis sonorensis virus (CsV). A Southern cross-blot hybridization analysis showed that the majority of CsV EcoRI restriction fragments cross-hybridize to multiple EcoRI fragments. These sequence homologies were analyzed by hybridizing recombinant clones of the CsV SH DNAs B, H, M, and O1 to Southern blots of undigested CsV DNA, using different hybridization stringencies. The results indicated that homologous regions among the SH DNAs include closely related sequences that are detectable under stringent conditions and related but more diverged sequences which are only detectable under reduced stringencies. A sequence that hybridized to the majority of the CsV SH DNAs was identified and subcloned from the SH DNAs O1, H, and B. Nucleotide sequence data revealed that these homologous regions contained a family of imperfectly conserved repeated elements. These repeat elements were arranged singly or in direct tandem arrays and had an average length of 540 base pairs. Within the sequenced regions that contained the repeated elements six putative open reading frames were identified. These results show that the CsV genome consists of SH DNAs with complex sequence interrelationships that may have arisen due to multiple recombinational events.  相似文献   

8.
32P-labeled adenovirus 2 DNA was treated with restricting endonuclease from Escherichia coli strain RY-13 (Yoshimori, 1972) (EcoRI) or restricting endonuclease from Hemophilus parainfluenzae (Hpa I) and the resulting fragments of DNA were separated by gel electrophoresis. The kinetics of renaturation of each of the fragments and of complete adenovirus 2 DNA were measured in the presence of DNA extracted from nine lines of adenovirus 2-transformed rat cells and from control cells. Six of the transformed cell lines contained viral DNA sequences homologous to two of the seven Hpa I4 fragments and to part of one of the six EcoRI fragments. From the order of the fragments formed by EcoRI and Hpa I on the adenovirus 2 map we conclude that these cell lines contain only the segment of viral DNA that stretches from the left-hand end to a point about 14% along the viral genome. Thus, any viral function expressed in transformed cells must be coded by this small section of viral DNA. The three remaining lines of adenovirus 2-transformed rat cells are more complicated and contain not only the sequences from the left-hand end of the viral DNA, but also other segments of the viral genome. However, no adenovirus 2-transformed rat cell contained DNA sequences homologous to the complete viral genome.  相似文献   

9.
A study of sequence homologies in four satellite DNAs of man.   总被引:4,自引:0,他引:4  
Satellites I, II, III and IV (Corneo et al., 1968,1970,1971) have been purified from human male placental DNA. The sequences present in these four DNA components have been characterized by analytical buoyant density, thermal denaturation, DNA reassociation, DNA hybridization and gel electrophoresis coupled with hybridization following either HaeIII or EcoRI restriction endonuclease digestion. Satellites III and IV were found to be virtually indistinguishable by a variety of criteria. Cross-satellite reassociation showed that 40% of the molecules present in satellite III contain sequences that are homologous to 10% of the molecules of either satellite I or satellite II. Reassociated satellite I melts as a single component, as do the hybrid duplexes between satellite I and satellite III. In contrast, reassociated satellites II, III and IV, and the hybrid duplexes formed between satellites II and III and between satellites II and IV, melt as two distinct components with different thermal stabilities.Digestion of satellite III with HaeIII gives rise to a series of fragments whose sizes are 2, 3, 4, 5, 6, 7, 8 and 11 times the size of the smallest 0.17 × 103 basepair fragment, in addition to a 3.4 × 103 base-pair male-specific fragment (Cooke, 1976) and high molecular weight material. The sequences contained in the fragments of the HaeIII ladder are diverged from each other as well as being non-homologous with those of the 3.4 × 103 base-pair and high molecular weight fragments. The latter contain EcoRI recognition sites. Satellite II has a similar pattern of fragments to satellite III following digestion with HaeIII, although it can be distinguished from satellite III on the basis of the products of EcoRI digestion. Satellite I contains neither HaeIII nor EcoRI recognition sites. The cross-satellite homologies of the sequences present in fragments of differing sizes produced by restriction enzyme digestion have also been studied.  相似文献   

10.
A 203 base-pair fragment containing the lac operator/promoter region of Escherichia coli was inserted into the EcoRI site of the plasmid vector pKC7. Rates of restriction endonuclease cleavage of the flanking EcoRI sites and of several other restriction sites on the DNA molecule were then compared in the presence and absence of bound RNA polymerase or lac repressor. The rates were identical whether or not protein had been bound, even for sites as close as 40 base-pairs from a protein binding site. No difference was detected using supercoiled, nicked circular, or linear DNA substrates. No apparent change in the rates of methylation of EcoRI sites by EcoRI methylase was produced by binding the regulatory proteins.  相似文献   

11.
EcoRI analysis of bacteriophage P22 DNA packaging.   总被引:20,自引:0,他引:20  
Bacteriophage P22 linear DNA molecules are a set of circularly permuted sequences with ends located in a limited region of the physical map. This mature form of the viral chromosome is cut in headful lengths from a concatemeric precursor during DNA encapsulation. Packaging of P22 DNA begins at a specific site, which we have termed pac, and then proceeds sequentially to cut lengths of DNA slightly longer than one complete set of P22 genes (Tye et al., 1974b). The sites of DNA maturation events have been located on the physical map of EcoRI cleavage sites in P22 DNA. EcoRI digestion products of mature P22 wild-type DNA were compared with EcoRI fragments of two deletion and two insertion mutant DNAs. These mutations decrease or increase the length of the genome, but do not alter the DNA encapsulation mechanism. Thus the position of mature molecular ends relative to EcoRI restriction sites is different in each mutant, and comparison of the digests shows which fragments come from the ends of linear molecules. From the positions of the ends of molecules processed in sequential headfuls, the location of pac and the direction of encapsulation relative to the P22 map were deduced. The pac site lies in EcoRI fragment A, 4.1 × 103 base-pairs from EcoRI cleavage site 1. Sequential packaging of the concatemer is initiated at pac and proceeds in the counterclockwise direction relative to the circular map of P22. One-third of the linears in a population are cut from the concatemer at pac, and most packaging sequences do not extend beyond four headfuls.Fragment D is produced by EcoRI cleavage at a site near the end of a linear chromosome which has been encapsulated starting at pac. The position of the pac site is therefore defined by one end of fragment D. The pac site is not located near genes 12 and 18, the only known site for initiation of P22 DNA replication, but lies among late genes at a position on the physical gene map approximately analogous to the cohesive end site (cos) of bacteriophage λ at which λ DNA is cleaved during encapsulation. Our results suggest that P22 and λ DNA maturation mechanisms have many common properties.  相似文献   

12.
The periodicities of the restriction enzyme cleavage sites in highly repetitive DNAs of six mammalian species (monkey, mouse, sheep, human, calf and rat) appear related to the length of DNA contained in the nucleosome subunit of chromatin. We suggest that the nucleosome structure is an essential element in the generation and evolution of repeated DNA sequences in mammals (Brown et al., 1978; Maio et al., 1977). The possibility of a phase relation between DNA repeat sequences and associated nucleosome proteins is consistent with this hypothesis and has been tested by restriction enzyme and micrococcal nuclease digestions of repetitive DNA sequences in isolated, intact nuclei.Sites for four different restriction enzyme activities, EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit of component α DNA, a highly repetitive DNA fraction of the African green monkey. The periodicity of cleavage sites for each of the enzymes (176 ± 4 nucleotide base-pairs) corresponds closely to the periodicity (about 185 nucleotide base-pairs) of the sites attacked in the initial stages of micrococcal nuclease digestion of nuclear chromatin. In intact monkey nuclei, EcoRI-RI1 sites are accessible to restriction enzyme cleavage; the HindIII and HaeIII sites are not. The results suggest (1) that, in component α chromatin, the EcoRI-RI1 sites are found at the interstices of adjacent nucleosomes and (2) the HindIII and HaeIII sites are protected from cleavage by their location on the protein core of the nucleosome. This interpretation was confirmed by experiments in which DNA segments of mononucleosomes and nucleosome cores released from CV-1 nuclei by micrococcal nuclease were subsequently treated with EcoRI, EcoRI1 and HindIII. A major secondary segment of component α, about 140 nucleotide base-pairs in length, was released only by treatment with HindIII, in keeping with the location of the HindIII sites in the restriction map and their resistance to cleavage in intact nuclei.EcoRI reduces calf satellite I DNA to a segment of about 1408 nucleotide basepairs. In contrast, restriction of calf satellite I DNA with EcoRI1 produces six prominent segments ranging in size from 176 to 1408 nucleotide base-pairs. Treatment of isolated calf nuclei with either EcoRI or EcoRI1 did not produce segments shorter than 1408 base-pairs, indicating that while canonical EcoRI sites are accessible to attack, the irregularly spaced EcoRI1 sites are specifically blocked. The results are consistent with a phase relation between the repeat sequence of calf satellite I DNA and an octameric array of nucleosomes.  相似文献   

13.
 Existing bacterial artificial chromosome (BAC) vectors were modified to have unique EcoRI cloning sites. This provided an additional site for generating representative libraries from genomic DNA digested with a variety of enzymes. A BAC library of lettuce was constructed following the partial digestion of genomic DNA with HindIII or EcoRI. Several experimental parameters were investigated and optimized. The BAC library of over 50,000 clones, representing one to two genome equivalents, was constructed from six ligations; average insert sizes for each ligation varied between 92.5 and 142 kb with a combined average insert size of 111 kb. The library was screened with markers linked to disease resistance genes; this identified 134 BAC clones from four regions containing resistance genes. Hybridization with low-copy genomic sequences linked to resistance genes detected fewer clones than expected from previous estimates of genome size. The lack of hybridization to chloroplast and mitochondrial sequences demonstrated that the library was predominantly composed of nuclear DNA. The unique EcoRI site in the BAC vector should allow the integration of BAC cloning with other technologies that utilize EcoRI digestion, such as AFLPTM markers and RecA-assisted restriction endonuclease (RARE) cleavage, to clone specific large EcoRI fragments from genomic DNA. Received: 5 August 1996 / Accepted: 23 August 1996  相似文献   

14.
A procedure for investigating the possibility of small amounts of partial DNA sequence homology between two defined DNA molecules has been developed and used to test for sequence homology between simian virus 40 and polyoma DNAs. This procedure, which does not necessitate the use of separated viral DNA strands, involves the construction of hybrid DNA molecules containing a simian virus 40 DNA molecule covalently joined to a polyoma DNA molecule, using the sequential action of EcoRI restriction endonuclease and Escherichia coli DNA ligase. Denaturation of such hybrid DNA molecules then makes it possible to examine intramolecularly rather than intermolecularly renatured molecules. Visualization of these intramolecularly renatured “snapback” molecules with duplex regions of homology by electron microscopy reveals a 15% region of weak sequence homology. This region is denatured at about 35 °C below the melting temperature of simian virus 40 DNA and therefore corresponds to about 75% homology. This region was mapped on both the simian virus 40 and polyoma genomes by the use of Hemophilus parainfluenzae II restriction endonuclease cleavage of the simian virus 40 DNA prior to EcoRI cleavage and construction of the hybrid molecule. The 15% region of weak homology maps immediately to the left of the EcoRI restriction endonuclease cleavage site in the simian virus 40 genome and halfway around from the EcoRI restriction endonuclease cleavage site in the polyoma genome.  相似文献   

15.
16.
The non-defective (heavy) virions from a simian virus 40-like virus (DAR virus) isolated from human brain have been serially passaged at high input multi-plicities in primary monkey kidney cells. The 32P-labeled, progeny DAR-viral genomes have been purified and tested for sensitivity to the RI restriction endouclease from Escherichia coli (Eco RI3 restriction nuclease). The parental DAR-viral genomes share many physical properties with “standard” simian virus 40 DNA and are cleaved once by the Eco RI restriction nuclease. After the fourth serial passage, three populations of genomes could be distinguished: Eco RI resistant, Eco RI sensitive (one cleavage site) and Eco RI “supersensitive” (three, symmetrically-located, cleavage sites). The Eco RI cleavage product of the “supersensitive” form is one-third the physical size (10.4 S) of simian virus 40 DNA and reassociates about three times more rapidly than sheared, denatured simian virus 40 DNA. From the fourth to the eighth serial passages, the genomes containing this specific triplication of viral DNA sequences were selected for and became the predominant viral DNA species.  相似文献   

17.
The sites recognized by the Escherichia coli K12 restriction endonuclease were localized to defined regions on the genomes of phage φXsK1, φXsK2, and G4 by the marker rescue technique. Methyl groups placed on the genome of plasmid pBR322 by the E. coli K12 modification methylase were mapped in HinfI fragments 1 and 3, and HaeIII fragments 1 and 3. A homology of seven nucleotides in the configuration: 5′-A-A-C .. 6N .. G-T-G-C-3′, where 6N represents six unspecified nucleotides, was found among the DNA sequences containing the five EcoK sites of φXsK1, φXsK2, G4, and pBR322. Three lines of evidence indicate that this sequence constitutes the recognition site of the E. coli K12 restriction enzyme. The C in 5′-A-A-C and the T in 5′-G-T-G-C are locations of mutations leading to loss or gain of the site and thus are positions recognized by the enzyme. This sequence does not occur on φXam3cs70, simian virus 40 (SV40), and fd DNAs which do not possess EcoK sites, and occurs only once on φXsK1, φXsK2, and G4 DNAs, and twice on pBR322 DNA. In order to prove that all seven conserved nucleotides are essential for the recognition by the E. coli K12 restriction enzyme, the nucleotide sequences of φX174, G4, SV40, fd, and pBR322 were searched for sequences differing from the sequence 5′-A-A-C .. 6N .. G-TG-C-3′ at only one of the specified positions. It was found that sequences differing at each of the specified positions occur on DNA sequences that do not contain the EcoK sites. Thus, the recognition site of the E. coli K12 restriction enzyme has the same basic structure as that of the EcoB site (Lautenberger et al., 1978). In each case there are two domains, one containing three and the other four specific nucleotides, separated by a sequence of unspecified bases. However, the unspecified sequence in the EcoK site must be precisely six bases instead of the eight found in the EcoB site. Alignment of the EcoK and EcoB sites suggests that four of the seven specified nucleotides are conserved between the sequences recognized by these two allelic restriction and modification systems.  相似文献   

18.
Restriction ondonuclease EcoRI was used to study the structure of the free ribosomal DNA molecules from Tetrahymena pyriformis, strain GL. From the following observations we conclude that the free rDNA molecules from Tetrahymena are giant palindromes3, each containing two genes for preribosomal RNA arranged in rotational symmetry as inverted repeating sequences. Analyses of the sizes of products of partial or complete digestion and quantitative analyses of the products of complete digestion of uniformly 32P-labeled rDNA yielded an RI endonucleolytic cleavage map which showed that the EcoRI recognition sites are arranged symmetrically about the center of the rDNA molecule.When heat-denatured rDNA was rapidly cooled under conditions in which no renaturation would occur between separated complementary strands of DNA, molecules of half the size of the original rDNA molecule were produced. These were double-stranded DNA molecules as evidenced by their resistance to digestion with S1 nuclease. Moreover, they could be digested with EcoRI to produce fragments of sizes which would be predicted from the assumption that each single strand of the original rDNA molecule had folded back on itself to form a “hair-pin” double-stranded DNA structure. Hybridization experiments between ribosomal RNA and purified rDNA showed that each rDNA molecule contains two genes for rDNA. Hybridization of the isolated EcoRI fragments of rDNA with 25 S or 17 S rRNA suggested that the two structural genes for 17 S rRNA are located near the center of the rDNA molecule and the two genes for 25 S rRNA are found in distal positions.  相似文献   

19.
We have isolated cloned segments of ribosomal DNA that have EcoRI restrictable (type II) insertions in their 28 S genes. The type II insertions in these plasmids are homologous sequences and have three characteristic cleavage sites for EcoRI. One of these clones is unusual in that it has undergone a deletion of part of the 28 S gene at or near the site of the type II insertion. A second is unusual in that, in addition to the type II insertion in the rDNA, the transcribed spacer sequences are interrupted by an unidentified sequence. This sequence differs in its arrangement of restriction sites from the sequence that interrupts the transcribed spacer of cDm207 (Glover, 1977). The type II sequences in all these clones share homology with the unusually long ‘insertion’ that interrupts the 28 S gene of cDm207. We have re-examined the nature of the additional sequences linked to the type II sequences of cDm207 and find them to be related to type I rDNA insertion sequences.  相似文献   

20.
Characterization of cloned rat ribosomal DNA fragments   总被引:4,自引:0,他引:4  
Summary Two Charon 4A lambda bacteriophage clones were characterized which contain all and part of the 18S ribosomal DNA of the rat. One clone contained two Eco RI fragments which include the whole 18S ribosomal RNA region and part of 28S ribosomal RNA region. The other clone contained an Eco RI fragment which covers part of 18S ribosomal RNA region. There were differences between the two clones in the non-transcribed spacer regions suggesting that there is heterogeneity in the non-transcribed spacer regions of rat ribosomal genes. The restriction map of the cloned mouse ribosomal DNA. Eco RI, Hind III, Pst I, and Bam HI sites in 18S ribosomal RNA region were in the same places in mouse and rat DNA but the restriction sites in the 5-spacer regions were different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号