首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO42−, Co2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, Pb2+, AsO2, and SeO32−) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated “domed,” “layer cake,” “flat,” and “mycelial.” This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.  相似文献   

2.
An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.  相似文献   

3.
Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150–200 μmol m−2 s−1) or moderate (600–800 μmol m−2 s−1) light conditions. Results were compared with rice plants grown in high (1200–2200 μmol m−2 s−1) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.  相似文献   

4.
5.
The full-length gene that encodes the chlorogenic acid hydrolase from Aspergillus niger CIRM BRFM 131 was cloned by PCR based on the genome of the strain A. niger CBS 513.88. The complete gene consists of 1,715 bp and codes for a deduced protein of 512 amino acids with a molecular mass of 55,264 Da and an acidic pI of 4.6. The gene was successfully cloned and overexpressed in A. niger to yield 1.25 g liter−1, i.e., 330-fold higher than the production of wild-type strain A. niger CIRM BRFM131. The histidine-tagged recombinant ChlE protein was purified to homogeneity via a single chromatography step, and its main biochemical properties were characterized. The molecular size of the protein checked by mass spectroscopy was 74,553 Da, suggesting the presence of glycosylation. ChlE is assembled in a tetrameric form with several acidic isoforms with pIs of around 4.55 and 5.2. Other characteristics, such as optimal pH and temperature, were found to be similar to those determined for the previously characterized chlorogenic acid hydrolase of A. niger CIRM BRFM 131. However, there was a significant temperature stability difference in favor of the recombinant protein. ChlE exhibits a catalytic efficiency of 12.5 × 106 M−1 s−1 toward chlorogenic acid (CGA), and its ability to release caffeic acid from CGA present in agricultural by-products such as apple marc and coffee pulp was clearly demonstrated, confirming the high potential of this enzyme.  相似文献   

6.
After light UV irradiation (5,000 to 10,000 ergs/mm2) “complete” and “defective” simian virus 40 (SV40) showed an enhancement of oncogenic transformation capacity in Syrian hamster kidney cells in vitro up to 180 and 270% of the controls, respectively. Simultaneously with the enhancement of transformation, an increase in T-antigen induction was observed in CV-1 cells infected with light UV-irradiated SV40; infectivity, however, was correspondingly reduced by 1 log10. After strong UV irradiation (10,000 to 80,000 ergs/mm2) of “complete” and “defective” SV40, transformation capacity in vitro proved to be the most resistant viral function. It was only slightly reduced in comparison with a 4 to 5 log10 reduction of infectivity. T-antigen induction of SV40 was also equally resistant to strong UV irradiation. We found no evidence of “multiplicity reactivation” involved in the high resistance of transformation capacity of SV40 after UV irradiation. Syrian hamster kidney cells transformed in vitro by UV-irradiated SV40 contained the SV40-specific T-antigen and showed the same morphology and growth characteristics as cells transformed by non-irradiated “complete” or “defective” SV40. They induced malignant tumors after subcutaneous inoculation into Syrian hamsters.  相似文献   

7.
Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca2+), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indirectly linked with photoreceptor degeneration in various animal models. Systematically studying these aspects of cone physiology and pathophysiology has been hampered by the difficulties of electrically recording from these small cells, in particular in the mouse where the retina is dominated by rod photoreceptors. To circumvent this issue, we established a two-photon Ca2+ imaging protocol using a transgenic mouse line that expresses the genetically encoded Ca2+ biosensor TN-XL exclusively in cones and can be crossbred with mouse models for photoreceptor degeneration. The protocol described here involves preparing vertical sections (“slices”) of retinas from mice and optical imaging of light stimulus-evoked changes in cone Ca2+ level. The protocol also allows “in-slice measurement” of absolute Ca2+ concentrations; as the recordings can be followed by calibration. This protocol enables studies into functional cone properties and is expected to contribute to the understanding of cone Ca2+ signaling as well as the potential involvement of Ca2+ in photoreceptor death and retinal degeneration.  相似文献   

8.
“Liquid” and “plasticized” solvent membranes are of interest as possible analogues of biological systems. Semipermeable homogeneous films are prepared by plasticizing polyvinylchloride with organic phosphates. Water permeability of such films is relatively high. For a material containing 70% of 1.4-dihydroxyphenyl-bis(dibutylphosphate), the diffusion coefficient of water at room temperature was estimated to be about 1 × 10-6 cm2/sec. Conditioning of a plasticized membrane, under the osmotic gradient of solution of sodium nitrate, leads to profound changes in its morphology and to a drastic increase of its water permeability. The induced changes are reversible to a large extent. Their reversibility in various solutions may be correlated with the respective differences in permselectivity. The structure of expanded membranes and the mechanism of changes taking place under the osmotic gradients are discussed.  相似文献   

9.
The concept of photosynthetic unit (PSU) is reviewed in the light of the authors' results in the fields of fluorescence and luminescence (delayed light). Models of PSU are mainly distinguished by the amount of exciton exchange which is allowed between units. The “separate” model, with its “first-order” character, is not consistent with fluorescence kinetic data. The sigmoidal rise of fluorescence under actinic light is best explained by “nonseparate” models; however, most of these models assume a delocalization of excitons or centers. The “connected” model introduced here is not subject to this criticism. It discloses a new effect (the “îlot” effect): a nonrandom grouping of fluorescent units the consequences of which are discussed. It is noted that a “two-quantum” model for the photochemical reaction gives results very similar to those of the connected model. A relation between luminescence intensity and fluorescence yield is seen as a necessary consequence of the PSU concept. Its meaning is different in separate and nonseparate models. This relation is discussed in connection with the true system II fluorescence emission.  相似文献   

10.
The filamentous cyanobacterium Microcoleus vaginatus, a major primary producer in desert biological sand crusts, is exposed to frequent hydration (by early morning dew) followed by desiccation during potentially damaging excess light conditions. Nevertheless, its photosynthetic machinery is hardly affected by high light, unlike “model” organisms whereby light-induced oxidative stress leads to photoinactivation of the oxygen-evolving photosystem II (PSII). Field experiments showed a dramatic decline in the fluorescence yield with rising light intensity in both drying and artificially maintained wet plots. Laboratory experiments showed that, contrary to “model” organisms, photosynthesis persists in Microcoleus sp. even at light intensities 2–3 times higher than required to saturate oxygen evolution. This is despite an extensive loss (85–90%) of variable fluorescence and thermoluminescence, representing radiative PSII charge recombination that promotes the generation of damaging singlet oxygen. Light induced loss of variable fluorescence is not inhibited by the electron transfer inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB), nor the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), thus indicating that reduction of plastoquinone or O2, or lumen acidification essential for non-photochemical quenching (NPQ) are not involved. The rate of QA re-oxidation in the presence of DCMU is enhanced with time and intensity of illumination. The difference in temperatures required for maximal thermoluminescence emissions from S2/QA (Q band, 22°C) and S2,3/QB (B band, 25°C) charge recombinations is considerably smaller in Microcoleus as compared to “model” photosynthetic organisms, thus indicating a significant alteration of the S2/QA redox potential. We propose that enhancement of non-radiative charge recombination with rising light intensity may reduce harmful radiative recombination events thereby lowering 1O2 generation and oxidative photodamage under excess illumination. This effective photo-protective mechanism was apparently lost during the evolution from the ancestor cyanobacteria to the higher plant chloroplast.  相似文献   

11.
12.
CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China''s Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m2 and located in the 2–4 m underground, DNAPL was accumulated at an area of approximately 1,400 m2 and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between “Fe2+” and most CAHs such as “1,1,1-TCA”, “1,1-DCA”, “1,1-DCE” and “%TCA” were significantly positive (p<0.001), but “%CA” and/or “%VC” was not, and “Cl-” was significantly positive correlated with “1,1-DCA” and “1,1-DCE” (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general.  相似文献   

13.
The overall conformations of regulated myosins or heavy meromyosins from chicken/turkey, scallop, tarantula, limulus, and scorpion sources have been studied by a number of techniques, including electron microscopy, sedimentation, and pulsed electron paramagnetic resonance. These studies have indicated that the binding of regulatory ions changes the conformation of the molecule from a compact shape found in the “off” state of the muscle to extended relationships between the tail and independently mobile heads that predominate in the “on” state. Here we strengthen the argument for the generality of this conformational change by using small angle X-ray scattering on heavy meromyosin from squid. Small angle X-ray scattering allows the protein to be visualized in solution under mild and relatively physiological conditions, and squid differs from the other species studied by at least 500 million years of evolution. Analysis of the data indicates that upon addition of Ca2+ the radius of gyration increases. Differences in the squid “on” and “off” states are clearly distinguishable as bimodal and unimodal pair distance distribution functions respectively. These observations are consistent with a Ca2+-free squid heavy meromyosin that is compact, but which becomes extended when Ca2+ is bound. Further, the scattering profile derived from the current model of tarantula heavy meromyosin in the “off” state is in excellent agreement with the measured “off” state scattering profile for squid heavy meromyosin. The previous and current studies together provide significant evidence that regulated myosin''s compact off-state conformation is an ancient trait, inherited from a common ancestor during divergent evolution.  相似文献   

14.
Garber MP 《Plant physiology》1977,59(5):981-985
The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. “Marketer”) and spinach (Spinacia oleracea L. “Bloomsdale”) were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light.  相似文献   

15.
The succulent leaf of the obligate Crassulacean acid metabolism plant Crassula falcata comprises two distinct types of parenchyma. The peripheral tissue is dark green, whereas the central tissue is relatively colorless. We have investigated whether the conventional interpretation of Crassulacean acid metabolism—simply, temporal separation of light and dark CO2 fixation within individual cells—is sufficient. Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and chlorophyll, indicating the photosynthetic-carbon-reduction pathway, were concentrated in peripheral tissue. Specific activities of P-enolpyruvate carboxylase (4.1.1.31) and of NAD+-malic enzyme (1.1.1.39), indicating capacity for dark CO2 fixation and release, respectively, were high in both types of parenchyma. Measured directly as malic acid decline at the beginning of the photoperiod, CO2 “storage” occurred in both tissues. These data indicate that there is a spatial component to Crassulacean acid metabolism in C. falcata.  相似文献   

16.
Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification.  相似文献   

17.
Thymine-requiring mutants of Micrococcus radiodurans have been isolated by selection on solid medium containing trimethoprim. Strains requiring either high concentrations of thymine (50 μg/ml) or low concentrations (2 μg/ml) for normal growth were obtained. The Thy mutant requiring low thymine concentrations has been characterized. It was shown to retain the high ultraviolet light (UV) resistance typical of wild-type M. radiodurans, but it was not resistant to thymineless death. Preliminary exposure of the cells to thymineless conditions resulted in enhanced UV sensitivity, and this interaction occurred under conditions where “unbalanced growth” was inhibited by the addition of chloramphenicol. Upon addition of thymine to deprived cells, UV resistance was gradually restored, and this recovery took place in the absence of protein synthesis. A model is proposed to account for the similarity of thymineless death in bacteria whose deoxyribonucleic acid repair efficiencies differ widely.  相似文献   

18.
Internal contamination of Salmonella in plants is attracting increasing attention for food safety reasons. In this study, three different tomato cultivars “Florida Lanai”, “Crown Jewel”, “Ailsa Craig” and the transgenic line Sp5 of “Ailsa Craig” were inoculated with 1 µl GFP-labeled Salmonella Typhimurium through guttation droplets at concentrations of 109 or 107 CFU/ml. Survival of Salmonella on/in tomato leaves was detected by both direct plating and enrichment methods. Salmonella cells survived best on/in the inoculated leaves of cultivar “Ailsa Craig” and decreased fastest on/in “Florida Lanai” leaves. Increased guttation in the abscisic acid over-expressing Sp5 plants may have facilitated the entrance of Salmonella into leaves and the colonization on the surface of tomato leaves. Internalization of Salmonella Typhimurium in tomato leaves through guttation drop inoculation was confirmed by confocal laser microscopy. For the first time, convincing evidence is presented that S. enterica can enter tomato leaves through hydathodes and move into the vascular system, which may result in the internal translocation of the bacteria inside plants.  相似文献   

19.

Background:

It is unclear whether participation in a randomized controlled trial (RCT), irrespective of assigned treatment, is harmful or beneficial to participants. We compared outcomes for patients with the same diagnoses who did (“insiders”) and did not (“outsiders”) enter RCTs, without regard to the specific therapies received for their respective diagnoses.

Methods:

By searching the MEDLINE (1966–2010), Embase (1980–2010), CENTRAL (1960–2010) and PsycINFO (1880–2010) databases, we identified 147 studies that reported the health outcomes of “insiders” and a group of parallel or consecutive “outsiders” within the same time period. We prepared a narrative review and, as appropriate, meta-analyses of patients’ outcomes.

Results:

We found no clinically or statistically significant differences in outcomes between “insiders” and “outsiders” in the 23 studies in which the experimental intervention was ineffective (standard mean difference in continuous outcomes −0.03, 95% confidence interval [CI] −0.1 to 0.04) or in the 7 studies in which the experimental intervention was effective and was received by both “insiders” and “outsiders” (mean difference 0.04, 95% CI −0.04 to 0.13). However, in 9 studies in which an effective intervention was received only by “insiders,” the “outsiders” experienced significantly worse health outcomes (mean difference −0.36, 95% CI −0.61 to −0.12).

Interpretation:

We found no evidence to support clinically important overall harm or benefit arising from participation in RCTs. This conclusion refutes earlier claims that trial participants are at increased risk of harm.When people are asked to participate in a randomized controlled trial (RCT), it is natural for them to ask several questions in return. How safe are these treatments? How many extra visits and tests must I undergo? Will the researchers keep my family doctor informed about what’s going on? What outcomes are to be measured, and do they include ones that are of interest to me as a patient?These multiple questions can be summarized as follows: Would I fare better being treated within the trial (as an “insider”) or in routine clinical care outside it (as an “outsider”)? Patients may ask this question in 1 of 2 ways. The first is highly specific: “Am I better off receiving this specific treatment as an insider or as an outsider?” Alternatively, they might ask a more general question: “Am I better off having my illness managed, regardless of the specific treatment I would receive, as an insider or as an outsider?” These questions are highly appropriate, and both deserve to be asked and answered,1,2 especially given that nonsystematic reviews have suggested a possible “inclusion benefit” from participating in trials.3These 2 specific patient questions are analogous to those posed by researchers asking whether treatments do more good than harm when applied under “ideal” circumstances (in explanatory trials) or in the “real world” of routine health care (in pragmatic trials). Vist and colleagues answered the explanatory question when their earlier review4 found no advantage or disadvantage from receiving the same treatment inside or outside an RCT. Left unanswered, however, was the broader, more pragmatic question. In our experience, trial participants are often offered new, as-yet-untested treatments that would not be available to them outside the trial. This review looks at the dilemma faced by these patients, which needs to be addressed before general conclusions can be drawn about trial safety.  相似文献   

20.
Suspension cultures of Eucommia ulmoides were developed and shown to accumulate chlorogenic acid. MS medium plus 2.0 mg l–1 2,4-dichlorophenoxy acetic acid was used for the cell suspension cultures of Eucommia ulmoides. The chlorogenic acid content of suspension cells was analyzed by capillary electrophoresis, and the mean content was 2.15%, approximate to that of Eucommia ulmoides leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号