首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Capsular polysialyl chains of wild-typeEscherichia coli K1 consist of about 200 sialyl units. Factors associated with the degree of polymerization of the K1 polysaccharide were studied by isolation of mutant bacteria resistant to K1 phage. The mutants (n=55) were characterized with respect to the length of their capsular sialyl chains by gel electrophoresis and reactivity with anti-K1 antibodies. No mutants with short sialyl chains were found, although the mutants displayed different phenotypic properties and produced different amounts of sialic acid. Ultrastructural examination revealed phenotypes with accumulations of apparent polysialic acid in the periplasm or cytosol. This observation provides direct support for the previously proposed translocation of the K1 polysaccharide via the periplasmic space during its biosynthesis.  相似文献   

2.
The neuS-encoded polysialytransferase (polyST) in Escherichia coli K1 catalyzes synthesis of polysialic acid homopolymers composed of unbranched sialyl alpha 2,8 linkages. Subcloning and complementation experiments showed that the K1 neuS was functionally interchangeable with the neuS from E. coli K92 (S. M. Steenbergen, T. J. Wrona, and E. R. Vimr, J. Bacteriol. 174:1099-1108, 1992), which synthesizes polysialic acid capsules with alternating sialyl alpha 2,8-2,9 linkages. To better understand the relationship between these polySTs, the complete K92 neuS sequence was determined. The results demonstrated that K1 and K92 neuS genes are homologous and indicated that the K92 copy may have evolved from its K1 homolog. Both K1 and K92 structural genes comprised 1,227 bp. There were 156 (12.7%) differences between the two sequences; among these mutations, 55 did not affect the derived primary structure of K92 polyST and hence were synonymous with the K1 sequence. Assuming maximum parsimony, another estimated 17 synonymous mutations plus 84 nonsynonymous mutations could account for the 70 amino acid replacements in K92 polyST; 36 of these replacements were judged to be conservative when compared with those of K1 polyST. There were no changes detected in the first 146 5' or last 129 3' bp of either gene, suggesting, in addition to the observed mutational differences, the possibility of a past recombination event between neuS loci of two different kps clusters. The results indicate that relatively few amino acid changes can account for the evolution of a glycosyltransferase with novel linkage specificity.  相似文献   

3.
4.
Granzyme K (GrK) is a trypsin-like serine protease that is elevated in patients with sepsis and acute lung inflammation. While GrK was originally believed to function exclusively as a pro-apoptotic protease, recent studies now suggest that GrK may possess other non-cytotoxic functions. In the context of acute lung inflammation, we hypothesized that GrK induces pro-inflammatory cytokine release through the activation of protease-activated receptors. The direct effect of extracellular GrK on PAR activation, intracellular signaling and cytokine was assessed using cultured human lung fibroblasts. Extracellular GrK induced secretion of IL-6, IL-8 and MCP-1 in a dose- and time-dependent manner in lung fibroblasts. Heat-inactivated GrK did not induce cytokine release indicating that protease activity is required. Furthermore, GrK induced activation of both the ERK1/2 and p38 MAP kinase signaling pathways, and significantly increased fibroblast proliferation. Inhibition of ERK1/2 abrogated the GrK-mediated cytokine release. Through the use of PAR-1 and PAR-2 neutralizing antibodies, it was determined that PAR-1 is essential for GrK-induced IL-6, IL-8 and MCP-1 release. In summary, extracellular GrK is capable of activating PAR-1 and inducing fibroblast cytokine secretion and proliferation.  相似文献   

5.
6.
7.
8.
9.
10.
Sumoylation silences the plasma membrane leak K+ channel K2P1   总被引:7,自引:0,他引:7  
Rajan S  Plant LD  Rabin ML  Butler MH  Goldstein SA 《Cell》2005,121(1):37-47
  相似文献   

11.
Chitinolytic properties of Bacillus pabuli K1   总被引:3,自引:1,他引:3  
The chitinolytic properties of Bacillus pabuli K1 isolated from mouldy grain was studied. Chitinase activity was measured as the release of p -nitrophenol from p -nitrophenyl-N, N'-diacetylchitobiose. Influences of substrate concentration and different environmental variables on growth and chitinase activity were determined. The optimum environmental conditions for chitinase production were: 30°C, initial pH 8, initial oxygen 10% and aw > 0.99. Chitinase production was induced when B. pabuli K1 was grown on colloidal chitin. The smallest chito-oligosaccharide able to induce chitinase production was N, N'-diacetylchitobiose, (GlcNAc)2. Production was also induced by (GlcNAc)3 and (GlcNAc)4. When the bacterium was grown on glucose or N -acetylglucosamine, no chitinases were formed. The highest chitinase production observed was obtained with colloidal chitin as substrate. The production of chitinases by B. pabuli K1 growing on chitin was repressed by high levels (0.6%) of glucose. The production was also repressed by 0.6% starch, laminarin and β-glucan from barley and by glycerol. The addition of pectin and carboxymethyl cellulose increased chitinase production.  相似文献   

12.
13.
S6K (ribosomal S6 kinase p70, p70S6K) activation requires phosphorylation at two stages. The first phosphorylation is independent of insulin stimulation and mediated by an unknown kinase. The second phosphorylation is mediated by mTOR in insulin dependent manner. In this study, we identified JNK1 (c-Jun N-terminal kinase 1) as a kinase in the first phosphorylation. S6K protein was phosphorylated by JNK1 at S411 and S424 in the carboxyl terminal autoinhibitory domain. The phosphorylation was observed in kinase assay with purified S6K as a substrate, and in cells after JNK1 activation by TNF-α or MEKK1 expression. The phosphorylation was detected in JNK2 null cells, but not in JNK1 null cells after TNF-α treatment. When JNK1 activation was inhibited by MKK7 knockdown, the phosphorylation was blocked in cells. The phosphorylation led to S6K protein degradation in NF-κB deficient cells. The degradation was blocked by inhibition of proteasome activity with MG132. In wide type cells, the phosphorylation did not promote S6K degradation when IKK2 (IKKβ, IκB kinase beta) was activated. Instead, the phosphorylation allowed S6K activation by mTOR, which stabilizes S6K protein. In IKK2 null cells or cells treated by IKK2 inhibitor, the phosphorylation led to S6K degradation. These data suggest that S6K is phosphorylated by JNK1 and the phosphorylation makes S6K protein unstable in the absence of IKK2 activation. This study provides a mechanism for regulation of S6K protein stability.  相似文献   

14.
Sesti F  Shih TM  Nikolaeva N  Goldstein SA 《Cell》2001,105(5):637-644
K1 killer strains of Saccharomyces cerevisiae harbor RNA viruses that mediate secretion of K1, a protein toxin that kills virus-free cells. Recently, external K1 toxin was shown to directly activate TOK1 channels in the plasma membranes of sensitive yeast cells, leading to excess potassium flux and cell death. Here, a mechanism by which killer cells resist their own toxin is shown: internal toxin inhibits TOK1 channels and suppresses activation by external toxin.  相似文献   

15.
We previously reported that hydrogen peroxide (H2O2) mediates mitogen activation of ribosomal protein S6 kinase 1 (S6K1) which plays an important role in cell proliferation and growth. In this study, we investigated a possible role of H2O2 as a molecular linker in Rac1 activation of S6K1. Overexpression of recombinant catalase in NIH-3T3 cells led to the drastic inhibition of H2O2 production by PDGF, which was accompanied by a decrease in S6K1 activity. Similarly, PDGF activation of S6K1 was significantly inhibited by transient transfection or stable transfection of the cells with a dominant-negative Rac1 (Rac1N17), while overexpression of constitutively active Rac1 (Rac1V12) in the cells led to an increase in basal activity of S6K1. In addition, stable transfection of Rat2 cells with Rac1N17 dramatically attenuated the H2O2 production by PDGF as compared with that in the control cells. In contrast, Rat2 cells stably transfected with Rac1V12 produced high level of H2O2 in the absence of PDGF, comparable to that in the control cells stimulated with PDGF. More importantly, elimination of H2O2 produced in Rat2 cells overexpressing Rac1V12 inhibited the Rac1V12 activation of S6K1, indicating the possible role of H2O2 as a mediator in the activation of S6K1 by Rac1. However, H2O2 could be also produced via other pathway, which is independent of Rac1 or PI3K, because in Rat2 cells stably transfected with Rac1N17, H2O2 could be produced by arsenite, which has been shown to be a stimulator of H2O2 production. Taken together, these results suggest that H2O2 plays a pivotal role as a mediator in Rac1 activation of S6K1.  相似文献   

16.
17.
18.
TOK1 encodes an outwardly rectifying K(+) channel in the plasma membrane of the budding yeast Saccharomyces cerevisiae. It is capable of dwelling in two kinetically distinct impermeable states, a near-instantaneously activating R state and a set of related delayed activating C states (formerly called C(2) and C(1), respectively). Dwell in the R state is dependent on membrane potential and both internal and external K(+) in a manner consistent with the K(+) electrochemical potential being its determinant, where dwell in the C states is dependent on voltage and only external K(+). Whereas activation from the C states showed high temperature dependencies, typical of gating transitions in other Shaker-like channels, activation from the R state had a temperature dependence nearly as low as that of simple ionic diffusion. These findings lead us to conclude that although the C states reflect the activity of an internally oriented channel gate, the R state results from an intrinsic gating property of the channel filter region.  相似文献   

19.
A newly recognized metabolite of vitamin K1, vitamin K1 chromenol, is produced when the vitamin is added to the plasma or serum of a number of species. The metabolite was identified by comparison of its uv and mass spectra and high-performance liquid chromatographic retention times with those of the synthetic vitamin K1 chromenol. In aqueous solution vitamin K chromenol decomposed to a variety of products and reacted with nucleophilic substances. Optimal conditions for its formation and evidence that chromenol formation may be an enzyme catalyzed reaction are presented.  相似文献   

20.
Mutually antagonistic K1 and K2 killer strains compete when mixed and serially subcultured. At pH 4.6, where the K1 killer toxin is more stable in vitro, the K1 strain outcompeted the K2 strains at both 18 and 30 degrees C. At pH 4.0, closer to the in vitro pH optimum of the K2 killer toxin, the K1 strain again predominated at 18 degrees C, but at 30 degrees C the K2 strains became the sole cell type on subculture. To show more clearly that these results were dependent upon the respective killer toxins, control experiments were conducted with isogenic, nonkiller strains cured of the dsRNA-based killer virions. Such nonkiller strains were unable to compete with antagonistic killers under conditions where their isogenic killer parents could, strongly suggesting that the killer phenotype was important in these competitions. Double K1-K2 killer strains cannot stably exist, as their dsRNA genomes compete at a replicative level. Using recombinant DNA methodology, a stable K1-K2 killer strain was constructed. This strain outcompeted both K1 and K2 killers when serially subcultured under conditions where either the K1 or the K2 strains would normally predominate in mixed cultures. Such a double killer may be useful in commercial fermentations, where there is a risk of contamination by killer yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号