共查询到20条相似文献,搜索用时 15 毫秒
1.
Patrice de Werra Maria Péchy-Tarr Christoph Keel Monika Maurhofer 《Applied and environmental microbiology》2009,75(12):4162-4174
The rhizobacterium Pseudomonas fluorescens CHA0 promotes the growth of various crop plants and protects them against root diseases caused by pathogenic fungi. The main mechanism of disease suppression by this strain is the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). Direct plant growth promotion can be achieved through solubilization of inorganic phosphates by the production of organic acids, mainly gluconic acid, which is one of the principal acids produced by Pseudomonas spp. The aim of this study was to elucidate the role of gluconic acid production in CHA0. Therefore, mutants were created with deletions in the genes encoding glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad), required for the conversion of glucose to gluconic acid and gluconic acid to 2-ketogluconate, respectively. These enzymes should be of predominant importance for rhizosphere-colonizing biocontrol bacteria, as major carbon sources provided by plant root exudates are made up of glucose. Our results show that the ability of strain CHA0 to acidify its environment and to solubilize mineral phosphate is strongly dependent on its ability to produce gluconic acid. Moreover, we provide evidence that the formation of gluconic acid by CHA0 completely inhibits the production of PLT and partially inhibits that of DAPG. In the Δgcd mutant, which does not produce gluconic acid, the enhanced production of antifungal compounds was associated with improved biocontrol activity against take-all disease of wheat, caused by Gaeumannomyces graminis var. tritici. This study provides new evidence for a close association of gluconic acid metabolism with antifungal compound production and biocontrol activity in P. fluorescens CHA0.Plant growth-promoting rhizobacteria (PGPR) (36) are root-colonizing bacteria that enhance the performance of crop plants by several mechanisms. First, they antagonize plant-pathogenic fungi, mainly by the production of antimicrobial metabolites, but also by competition for iron or rhizosphere niches (9, 23, 24, 59). The biocontrol activity of many disease-suppressive microorganisms is also attributed to stimulation of host defense (induced systemic resistance). Other mechanisms by which these rhizobacteria directly promote plant growth are the production of phytohormones and the increase of nutrient, in particular phosphate, availability to plants (18, 37). Certain rhizobacteria are able to solubilize insoluble or poorly soluble mineral phosphates by producing acid phosphatases and organic acids, mainly gluconic acid (2, 34, 60). Some PGPR combine these different plant-beneficial activities and are able to suppress soilborne plant diseases, as well as to increase phosphate availability for plants (72).In fluorescent pseudomonads, gluconic acid production is catalyzed by periplasmic oxidation of glucose by membrane-bound glucose dehydrogenase (Gcd) (Fig. (Fig.1A)1A) (16, 43). In many gram-negative bacteria, the synthesis of gluconic acid has been shown to be dependent on pyrroloquinoline quinone (PQQ) as an enzymatic cofactor of the Gcd (1, 14). A consecutive oxidation reaction is mediated by gluconate dehydrogenase (Gad), which converts gluconic acid to 2-ketogluconate (Fig. (Fig.1A)1A) (11, 12, 44, 50). These enzymes should be of predominant importance for biocontrol soil pseudomonads, as major carbon sources provided by plant root exudates in the rhizosphere are made up of glucose (29, 69, 70). The two enzymes involved in glucose metabolism may have a substantial influence on general nutrient availability in the rhizosphere. First, Gcd and Gad affect glucose levels, and second, they may modulate the availability of soluble phosphates by controlling the amount of gluconic acid released into the rhizosphere. Furthermore, the production of gluconic acid might substantially change the rhizosphere pH. Therefore, Gcd and Gad enzymes produced by fluorescent pseudomonads are likely to be important for soil fertility and to impact the activities of other organisms living in the rhizosphere, e.g., fungal pathogens attacking the roots. Indeed, gluconic acid metabolism has already been linked to antifungal activity. Recently, Kaur et al. (30) proposed that gluconic acid produced by a nonfluorescent Pseudomonas isolate may be important for the biological control of take-all disease.Open in a separate windowFIG. 1.(A) Periplasmic and intracellular glucose catabolism in pseudomonads based on studies with P. aeruginosa (10), P. putida (11, 12), and P. fluorescens (17, 28). Shown are membrane-bound enzymes involved in periplasmic glucose metabolism, Gcd (glucose dehydrogenase) and Gad (gluconate dehydrogenase), and enzymes involved in cytoplasmic glucose metabolism, Glk (glucokinase), Zwf (glucose-6-phosphate 1-dehydrogenase), GnuK (gluconokinase), KguK (2-ketogluconate kinase), and KguD (2-ketogluconate 6-phosphate reductase) (the names of the enzymes are derived from the nomenclature for P. putida KT2440 [12, 54]). (B and C) Physical locations of the gcd (B) and gad (C) genes in the genome of P. fluorescens strain CHA0. The shaded arrows show the sequenced or partly sequenced genes. The representation is based on the sequence data for strain CHA0 obtained by sequencing the chromosomal fragments inserted in the indicated vectors. The designations of the ORFs flanking the gcd and gad genes are based on the corresponding locus tags in the complete annotated sequence of the closely related P. fluorescens strain Pf-5 (56). Δ, region deleted in strains CHA1196 and CHA1197 and in plasmids pME3087::F34 and pME3087::F12. The bars designate the fragments cloned into the vector pME3087 to give pME3087::F34 and pME3087::F12 and into pColdI to give pColdI::gcd and pColdI::gad. Artificial restriction sites on the cloned fragments are marked with asterisks.Pseudomonas fluorescens CHA0 is a bacterial strain known to be able to suppress various soilborne plant diseases (24). Its biocontrol ability has been linked to the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) (31, 33) and pyoluteorin (PLT) (46, 47). The strain is also able to solubilize mineral phosphate and to improve plant growth under phosphate-limiting conditions (A. von Felten, personal communication). Gluconic acid is supposed to play a predominant role in the phosphate solubilization activity of P. fluorescens CHA0, and we hypothesize that the metabolite also has an impact on the biocontrol activity of this PGPR strain.The aim of this study was to elucidate the role of gluconic acid production in P. fluorescens CHA0 with respect to its phosphate-solubilizing ability, antifungal metabolite production, and ability to suppress fungal root diseases. To this end, mutants of strain CHA0 carrying deletions in the gcd gene, encoding Gcd, and the gad gene, encoding Gad (Fig. (Fig.1),1), were created. The three in-frame deletion mutants, CHA1196 (Δgcd), CHA1197 (Δgad), and CHA1198 (Δgcd Δgad), were compared with their parental strain for the ability to produce organic acids, to solubilize inorganic phosphate, to produce the antifungal metabolites DAPG and PLT, to inhibit the growth of fungal pathogens, and to suppress different soilborne diseases. We provide evidence that in fact, gluconic acid production by P. fluorescens CHA0 is involved not only in the solubilization of phosphate, but also in the regulation of antifungal compound production and, as a consequence, can influence the level of plant protection provided by the strain. 相似文献
2.
Thiamine-Auxotrophic Mutants of Pseudomonas fluorescens CHA0 Are Defective in Cell-Cell Signaling and Biocontrol Factor Expression
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Christophe Dubuis Joëlle Rolli Matthias Lutz Genevive Dfago Dieter Haas 《Applied microbiology》2006,72(4):2606-2613
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 × 10−8 M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens. 相似文献
3.
Inactivation of the Regulatory Gene algU or gacA Can Affect the Ability of Biocontrol Pseudomonas fluorescens CHA0 To Persist as Culturable Cells in Nonsterile Soil
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Fabio Mascher Yvan Moënne-Loccoz Ursula Schnider-Keel Christoph Keel Dieter Haas Genevive Dfago 《Applied microbiology》2002,68(4):2085-2088
Rifampin-resistant Pseudomonas fluorescens CHA0-Rif and mutants in which the regulatory gene algU (encoding sigma factor σE) or gacA (encoding a global regulator of secondary metabolism) was inactivated were compared for persistence in three nonsterile soils. Functional algU and (particularly) gacA were needed for CHA0-Rif to maintain cell culturability in soil. 相似文献
4.
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol. 相似文献
5.
Effect of Stress on the Ability of a phlA-Based Quantitative Competitive PCR Assay To Monitor Biocontrol Strain Pseudomonas fluorescens CHA0
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
A quantitative competitive PCR (QC-PCR) assay targeting the phlA gene of Pseudomonas fluorescens CHA0 was developed and tested in vitro. Statistically significant, positive correlations were found between QC-PCR and both CFU and total cell number when studying cells in log or stationary phase. The correlations disappeared when considering stressed cells. 相似文献
6.
Predominance of Nonculturable Cells of the Biocontrol Strain Pseudomonas fluorescens CHA0 in the Surface Horizon of Large Outdoor Lysimeters 总被引:2,自引:0,他引:2
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The persistence of the biocontrol agent Pseudomonas fluorescens CHA0 in the surface horizon of 12 large outdoor lysimeters planted with winter wheat, Phacelia tanacetifolia followed by spring wheat, or maize was monitored for 1 year. Soil was inoculated with a spontaneous rifampin-resistant mutant (CHA0-Rif) of CHA0, and the strain was studied by using colony counts, Kogure's direct viable counts, and total counts (immunofluorescence). The number of culturable cells of the inoculant decreased progressively from 8 to 2 log CFU/g of soil or lower. However, culturable cells of CHA0-Rif accounted for less than 1% of the total cells of the inoculant 8 months after release in autumn. Since viable but nonculturable cells represented less than a quarter of the latter, most cells of CHA0-Rif in soil were thus inactive-dormant or dead at that time. Nonculturable cells of the inoculant were predominant also in the surface horizon of the lysimeters inoculated in the spring, and a significant fraction of them were viable. Results suggest that the occurrence of nonculturable cells of CHA0-Rif was influenced by climatic factors (water availability and soil temperature) and the abundance of roots in soil. The fact that the inoculant persisted as mixed populations of cells of different physiological states, in which nonculturable cells were predominant, needs to be taken into account when assessing the autecology of wild-type or genetically modified pseudomonads released into the soil ecosystem. 相似文献
7.
Characterization of PhlG, a Hydrolase That Specifically Degrades the Antifungal Compound 2,4-Diacetylphloroglucinol in the Biocontrol Agent Pseudomonas fluorescens CHA0
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative ΔphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a ΔphlA ΔphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s−1 and a Km of 140 μM at 30°C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH. 相似文献
8.
Impact of Field Release of Genetically Modified Pseudomonas fluorescens on Indigenous Microbial Populations of Wheat 总被引:5,自引:2,他引:3
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
F. De Leij E. J. Sutton J. M. Whipps J. S. Fenlon J. M. Lynch 《Applied microbiology》1995,61(9):3443-3453
In a field release experiment, an isolate of Pseudomonas fluorescens, which was chromosomally modified with two reporter gene cassettes (lacZY and Kan(supr)-xylE), was applied to spring wheat as a seed coating and subsequently as a foliar spray. The wild-type strain was isolated from the phylloplane of sugar beet but was found to be a common colonizer of both the rizosphere and phylloplane of wheat as well. The impact on the indigenous microbial populations resulting from release of this genetically modified microorganism (GMM) was compared with the impact of the unmodified, wild-type strain and a nontreated control until 1 month after harvest of the crop. The release of the P. fluorescens GMM and the unmodified, wild-type strain resulted in significant but transient perturbations of some of the culturable components of the indigenous microbial communities that inhabited the rhizosphere and phylloplane of wheat, but no significant perturbations of the indigenous culturable microbial populations in nonrhizosphere soil were found. Fast-growing organisms that did not produce resting structures (for example, fluorescent pseudomonads and yeasts) seemed to be most sensitive to perturbation. In terms of hazard and risk to the environment, the observed microbial perturbations that resulted from this GMM release may be considered minor for several reasons. First, the recombinant P. fluorescens strain caused changes that were, in general, not significantly different from those caused by the unmodified wild-type strain; second, perturbations resulting from bacterial inoculations were mainly small; and third, the release of bacteria had no obvious effects on plant growth and plant health. 相似文献
9.
Girlanda M Perotto S Moenne-Loccoz Y Bergero R Lazzari A Defago G Bonfante P Luppi AM 《Applied and environmental microbiology》2001,67(4):1851-1864
Little is known about the effects of Pseudomonas biocontrol inoculants on nontarget rhizosphere fungi. This issue was addressed using the biocontrol agent Pseudomonas fluorescens CHA0-Rif, which produces the antimicrobial polyketides 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt) and protects cucumber from several fungal pathogens, including Pythium spp., as well as the genetically modified derivative CHA0-Rif(pME3424). Strain CHA0-Rif(pME3424) overproduces Phl and Plt and displays improved biocontrol efficacy compared with CHA0-Rif. Cucumber was grown repeatedly in the same soil, which was left uninoculated, was inoculated with CHA0-Rif or CHA0-Rif(pME3424), or was treated with the fungicide metalaxyl (Ridomil). Treatments were applied to soil at the start of each 32-day-long cucumber growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first and fifth cycles. Over 11,000 colonies were studied and assigned to 105 fungal species (plus several sterile morphotypes). The most frequently isolated fungal species (mainly belonging to the genera Paecilomyces, Phialocephala, Fusarium, Gliocladium, Penicillium, Mortierella, Verticillium, Trichoderma, Staphylotrichum, Coniothyrium, Cylindrocarpon, Myrothecium, and Monocillium) were common in the four treatments, and no fungal species was totally suppressed or found exclusively following one particular treatment. However, in each of the two growth cycles studied, significant differences were found between treatments (e.g., between the control and the other treatments and/or between the two inoculation treatments) using discriminant analysis. Despite these differences in the composition and/or relative abundance of species in the fungal community, treatments had no effect on species diversity indices, and species abundance distributions fit the truncated lognormal function in most cases. In addition, the impact of treatments at the 32-day mark of either growth cycle was smaller than the effect of growing cucumber repeatedly in the same soil. 相似文献
10.
The antibiotic 2,4-diacetylphloroglucinol (Phl) is produced by a range of naturally occurring fluorescent pseudomonads. One isolate, Pseudomonas fluorescens F113, protects pea plants from the pathogenic fungus Pythium ultimum by reducing the number of pathogenic lesions on plant roots, but with a concurrent reduction in the emergence of plants such as pea. The genes responsible for Phl production have been shown to be functionally conserved between the wild-type (wt) P. fluorescens strains F113 and Q2-87. In this study the genes from F113 were isolated using an optimized long PCR method and a 6.7-kb gene cluster inserted into the chromosome of the non-Phl-producing P. fluorescens strain SBW25 EeZY6KX. This strain is a lacZY, kmR marked derivative of the wt SBW25 which effects biological control against the plant pathogen Pythium ultimum by competitive exclusion as a result of its strong rhizosphere-colonizing ability. We describe here the integration of the Phl antifungal and competitive exclusion mechanisms into a single strain, and the impact this has on survival and plant emergence in microcosms. The insertion of the Phl biosynthetic genes from the F113 into the SBW25 chromosome gave a Phl-producing transformant (strain Pa21) able to suppress P. ultimum through antibiotic production. The growth of Pa21 was not reduced in flask culture at 20°C compared with its parent strain. When inoculated on pea seedlings, the strain containing the Phl operon behaved similarly to the SBW25 EeZY6KX parent but did not show the tendency of the wt Phl producer F113 to cause lower pea seed emergence. Pea roots inoculated with SBW25 EeZY6KX have significantly lower indigenous populations than with F113 and the control. This is indicative of this strains strong colonising presence. Pa21, the Phl-modified strain, is able to exclude the resident population from roots to the same degree as the SBW25 EeZY6KX from which it is derived. This suggests that it has maintained its competitiveness around the root systems of plants even with the introduction of the Phl locus. Thus, strain Pa21 possesses the qualities necessary to provide effective integrated biocontrol, through maintaining both its wt trait of competitive exclusion on the plant roots, while also expressing the genes from the F113 biocontrol strain for Phl production. Interestingly, however, an additional beneficial trait appears to emerge with the strain Pa21s lowered survival competence compared with SBW25 EeZY6KX in the rhizosphere soil. With fears of the spread of genetically modified organisms and persistence in the soil, this trait may be of some ecological and commercial benefit and becomes a candidate for further investigation and possible exploitation. 相似文献
11.
Contribution of the Global Regulator Gene gacA to Persistence and Dissemination of Pseudomonas fluorescens Biocontrol Strain CHA0 Introduced into Soil Microcosms
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Andreas Natsch Christoph Keel Hanspeter A. Pfirter Dieter Haas Genevive Dfago 《Applied microbiology》1994,60(7):2553-2560
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere. 相似文献
12.
The Viable-but-Nonculturable State Induced by Abiotic Stress in the Biocontrol Agent Pseudomonas fluorescens CHA0 Does Not Promote Strain Persistence in Soil 总被引:2,自引:0,他引:2
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Fabio Mascher Carsten Hase Yvan Moënne-Loccoz Genevive Dfago 《Applied microbiology》2000,66(4):1662-1667
The effects of oxygen limitation, low redox potential, and high NaCl stress for 7 days in vitro on the rifampin-resistant biocontrol inoculant Pseudomonas fluorescens CHA0-Rif and its subsequent persistence in natural soil for 54 days were investigated. Throughout the experiment, the strain was monitored using total cell counts (immunofluorescence microscopy), Kogure's direct viable counts, and colony counts (on rifampin-containing plates). Under in vitro conditions, viable-but-nonculturable (VBNC) cells of CHA0-Rif were obtained when the strain was exposed to a combination of low redox potential (230 mV) and oxygen limitation. This mimics a situation observed in the field, where VBNC cells of the strain were found in the waterlogged soil layer above the plow pan. Here, VBNC cells were also observed in vitro when CHA0-Rif was subjected to high NaCl levels (i.e., NaCl at 1.5 M but not 0.7 M). In all treatments, cell numbers remained close to the inoculum level for the first 12 days after inoculation of soil, regardless of the cell enumeration method used, but decreased afterwards. At the last two samplings in soil, VBNC cells of CHA0-Rif were found in all treatments except the one in which log-phase cells had been used. In the two treatments that generated high numbers of VBNC cells in vitro, VBNC cells did not display enhanced persistence compared with culturable cells once introduced into soil, which suggests that this VBNC state did not represent a physiological strategy to improve survival under adverse conditions. 相似文献
13.
Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin 总被引:1,自引:0,他引:1
Youard ZA Mislin GL Majcherczyk PA Schalk IJ Reimmann C 《The Journal of biological chemistry》2007,282(49):35546-35553
The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2'R, 4'R (pyochelin I) and 4'R, 2'S, 4'R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed. 相似文献
14.
15.
Pseudomonas fluorescens strain CHA0 and its antibiotic overproducing derivative CHA0/pME3424 repeatedly reduced Meloidogyne incognita galling on tomato, brinjal, mungbean and soya bean roots but not in chilli. An antibiotic‐deficient derivative, CHA89, did not reduce nematode invasion in any of the plant species tested. When plant species were compared, bacterial inoculants afforded better protection to tomato, mungbean and soya bean roots against root‐knot nematodes than to brinjal and chilli. Antibiotic overproducing strain CHA0/pME3424 markedly reduced fresh shoot weights of chilli and mungbean while antibiotic‐deficient strain CHA89 enhanced fresh shoot weights of mungbean. While strains CHA0 had no significant impact on fresh root weights of any of the plant species, strain CHA0/pME3424 consistently reduced fresh root weights of brinjal and mungbean. In none of the plant species the bacterial strains had an influence on protein contents of the leaves. Regardless of the plant species, the three bacterial strains did not differ markedly in their rhizosphere colonization pattern. However, colonization was highest in brinjal rhizosphere and lowest in the mungbean rhizosphere. A slight host genotype effect on the biocontrol performance of the bacterial inoculants was also detected at cultivar level. When five soya bean cultivars were compared, biocontrol bacteria exhibited best suppression of the root‐knot nematode in cv. Ajmeri. Antibiotic overproducing strain CHA0/pME3424 substantially reduced fresh shoot weights of the soya bean cultivars Centuray 84 and NARC‐I while strain CHA89 enhanced shoot weights of the cultivars Ajmeri, William‐82 and NARC‐II. Wild type strain CHA0 had no significant impact on fresh shoot weights of any of the soya bean cultivars. Strain CHA0/pME3424 reduced fresh weights of root of Century 84, NARC‐I and NARC‐II while strain CHA89 increased root weights. Bacterial rhizosphere colonization was highest in variety NARC‐I and lowest in variety Ajmeri. Plant age had a significant impact on the biocontrol performance of bacterial inoculants against nematodes. The biocontrol effect of all bacterial strains was more prominent during early growth stage (7 days after nematode inoculation). A strong negative correlation between bacterial rhizosphere colonization and nematode invasion in soya bean roots was observed. 相似文献
16.
Characterization of the hcnABC Gene Cluster Encoding Hydrogen Cyanide Synthase and Anaerobic Regulation by ANR in the Strictly Aerobic Biocontrol Agent Pseudomonas fluorescens CHA0 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《Journal of bacteriology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Jacques Laville Caroline Blumer Christine Von Schroetter Valeria Gaia Genevive Dfago Christoph Keel Dieter Haas 《Journal of bacteriology》1998,180(12):3187-3196
The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the −40 sequence (TTGGC….ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT….ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot. 相似文献
17.
Fusaric Acid-Producing Strains of Fusarium oxysporum Alter 2,4-Diacetylphloroglucinol Biosynthetic Gene Expression in Pseudomonas fluorescens CHA0 In Vitro and in the Rhizosphere of Wheat
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Regina Notz Monika Maurhofer Helen Dubach Dieter Haas Genevive Dfago 《Applied microbiology》2002,68(5):2229-2235
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA′-′lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA′-′lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA+) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA−) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere. 相似文献
18.
The Sigma Factor AlgU (AlgT) Controls Exopolysaccharide Production and Tolerance towards Desiccation and Osmotic Stress in the Biocontrol Agent Pseudomonas fluorescens CHA0 总被引:3,自引:0,他引:3
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Ursula Schnider-Keel Kirsten Bang Lejblle Eric Baehler Dieter Haas Christoph Keel 《Applied microbiology》2001,67(12):5683-5693
A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and ς22) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU′-′lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment. 相似文献
19.
AIMS: To assess whether Pseudomonas fluorescens strain CHA0 and its genetically modified derivatives, CHA0/pME3424 (antibiotic over-producer) and CHA89 (antibiotic-deficient) could have an impact on the fungal community structure and composition in the rhizosphere of mungbean. METHODS AND RESULTS: Under glasshouse conditions, mungbean was grown repeatedly in the same soil, which was inoculated with CHA0, CHA0/pME3424, CHA89 or was left untreated. Treatments were applied to soil at the start of each 36-day mungbean growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first, second and third cycles. The effects of CHA0 and CHA0/pME3424 did differ from the controls while CHA89 did not. Whereas all major fungal species were frequently isolated from both bacterized and nonbacterized rhizospheres, certain fungal species were exclusively promoted or specifically suppressed from Pseudomonas-treated soils. In general, fungal diversity and equitability tended to decrease with time while species richness slightly increased. Whilst a total of 29 fungal species were isolated from the mungbean rhizosphere, only eight species colonized the root tissues. CONCLUSIONS: Soil inoculation with Ps. fluorescens CHA0 or CHA0/pME3424 altered fungal community structure in mungbean rhizosphere but strain CHA89 failed to produce such effect. SIGNIFICANCE AND IMPACT OF THE STUDY: Pseudomonas fluorescens-mediated alteration in the composition and structure of fungal communities might have acute or lasting effects on ecosystem functioning. Furthermore, the study provides useful data pertinent to characterization of the fate of genetically modified inoculants (e.g. antibiotic-overproducing Pseudomonas strains) released into the environment. 相似文献
20.
Effect of Insertion Site and Metabolic Load on the Environmental Fitness of a Genetically Modified Pseudomonas fluorescens Isolate
下载免费PDF全文
![点击此处可从《Applied microbiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Frans A. A. M. De Leij Catherine E. Thomas Mark J. Bailey John M. Whipps James M. Lynch 《Applied microbiology》1998,64(7):2634-2638
An isolate of Pseudomonas fluorescens (SBW25) was modified with different marker genes (lacZY, aph-1, and xylE). These marker genes were inserted singly or in combination into two separate (1 Mbp apart) and presumably nonessential sites (-6- and Ee) on the chromosome of SBW25. This allowed the production of a range of genetically modified SBW25 variants that differed with respect to insertion site of the marker genes and metabolic burden. The environmental fitness of the different SBW25 variants was tested in soil, in the rhizosphere of wheat and pea, and on the phylloplane of wheat. Reduced environmental fitness of the different variants was mainly attributed to the extra metabolic burden of novel gene expression, whereas choice of insertion site was of little significance. Changes in environmental fitness were dependent on the environmental conditions; an environment, such as soil, with a low microbial carrying capacity had a negative effect on the environmental fitness of variants with a large metabolic load. In environments with a larger carrying capacity, such as the rhizosphere of pea, environmental fitness of variants with a large metabolic load was not significantly different from that of variants with a smaller metabolic burden. 相似文献