首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

2.
Predatory insects that depend upon particular prey animals are commonly regulated by the prey animal’s abundance. Nymphs of the giant water bug Kirkaldyia (=Lethocerus) deyrolli (Heteroptera: Belostomatidae) are predators regarded as specialists in feeding on tadpoles. We studied the ontogenetic diet shift of aquatic nymphs by quantifying instar abundance and by analyzing captured prey and prey relative abundance during the period of rice irrigation in three localities. We also evaluated the contribution of major prey items (tadpoles, frogs, and Odonata nymphs) on specific growth rates of each nymphal stage in a rearing experiment. First to third-instar nymphs of K. deyrolli fed mainly on tadpoles, regardless of differences in prey availability. Nymphs of subsequent fourth and fifth instar stages shifted from tadpoles to other prey animals within each rice field. A rearing experiment demonstrated that giant water bug nymphs provided with tadpoles had greater specific growth rates at all nymphal stages, except for the final stage, than nymphs fed other prey (frogs and Odonata nymphs). The emergence of young K. deyrolli nymphs seemed to coincide with the period during which tadpoles became abundant in the rice fields. Consumption of tadpoles seems important to allow the nymph to complete its larval development in an unstable temporary habitat. An erratum to this article can be found at  相似文献   

3.
D. N. Karowe 《Oecologia》1989,78(1):106-111
Summary Although newly-emerged Colias philodice readily accept Medicago sativa, Melilotus alba, and Coronilla varia, fifth instar larvae reared on any single plant species display a highly significant induced feeding preference for their rearing host. Forced host-switching reveals that fifth instar relative growth rate (RGR) on M. sativa and M. alba is significantly reduced by prior feeding on either alternative host. Moreover, regardless of rearing diet, switching to a novel host during the fifth instar results in reduced RGR, relative consumption rate (RCR), efficiency of conversion of digested food (ECD), and pupal weight. These results support the hypothesis that induction of feeding preference is an adaptive response that predisposes larvae to feed on the plant species they are most capable of utilizing for growth.  相似文献   

4.
T. Tsuruishi 《Limnology》2003,4(1):0011-0018
 The life cycle of a giant carnivorous caddisfly, Himalopsyche japonica (Morton), was studied in two mountain streams in Nagano Prefecture, Central Japan. Field surveys and rearing experiments in the laboratory were conducted from October 1997 to September 2001. The life cycle of H. japonica was estimated to be a complex univoltine cycle that partly includes bivoltine populations. The adults had a long flight period, from April to September, with three distinct peaks of emergence. First to third instar larvae were collected from June to February, and the last (fifth) instar larvae and pupae appeared throughout the year. In autumn, the larvae belonging to all instars were found, and younger ones overwintered in the fourth instar stage and others in the fifth instar stage. On the other hand, fifth instar larvae and pupae ceased developing in autumn even though the water temperature was higher than the developmental zero temperature. The overwintered pupae emerged as adults in April, and the overwintered fifth instar larvae pupated in May and emerged in June. The larvae which overwintered in the fourth instar stage probably emerged after June. Received: March 19, 2002 / Accepted: January 10, 2003 Present address: United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan Tel. +81-265-77-1401; Fax +81-265-74-7496 e-mail: himalo@f8.dion.ne.jp Acknowledgments The author thanks Prof. T. Yoshida, Prof. H. Nakamura, and Associate professor K. Soma, Shinshu University; Mr. T. Nozaki, Kanagawa Environmental Research Center; and Mr. N. Kubota, Environmental Assessment Center in Matsumoto laboratory for their advice and help in accomplishing this research. The author is also grateful to Prof. K. Tanida, Osaka Prefecture University; Dr. T. Ito, Hokkaido Fish Hatchery; Mr. K. Okazaki, Kutchan City Museum; and Mrs. Y. Isobe, Nara Women's University, for suggesting references. Miss. T. Ishiyama, Mr. H. Kojima, Mr. M. Yagyu, and the students of the Forest Animals Laboratory in Shinshu University kindly provided field samples. Correspondence to:T. Tsuruishi  相似文献   

5.
KK-42 (1-benzyl-5-[(E)-2,6-dimethyl-1,5-heptadienyl]imidazole), administered by feeding, delayed the growth and development of nondiapause-bound and diapause-bound Ostrinia nubilalis larvae and increased the length of the instar. At doses of 80–240 ppm, 62–100% of nondiapause-bound fourth instars precociously pupated or remained as fourth instars, while 52–100% of diapause-bound fourth instars did not molt to the fifth instar. Injection of these nondiapause- and diapause-bound KK-42-fed fourth instars with ecdysone elicited a molt and resulted in the production of larval-pupal intermediates. When mature fourth instar controls were similarly injected, they molted into normal fifth instars. These results support the view that KK-42 delays/inhibits ecdysteroid production. Both eupyrene and apyrene spermiogenesis were prematurely initiated in nondiapause-bound fourth instars that were fed on medium containing 160 ppm KK-42. Fenoxycarb, a potent juvenile hormone mimic, rescued nondiapause-bound fourth instars from precocious pupation. All fenoxycarbtreated larvae either molted to the fifth instar or remained as fourth instars and eventually died. These results support the view that treatment with KK-42 inhibits JH production. When KK-42 treatment was begun in the third instar, a considerable number of nondiapause-bound and some diapause-bound third instars precociously molted to the fifth instar. There was a correlation between weight and the incidence of precocious molting in that third instars destined to skip the fourth instar attained a weight, as pharate fifth instars, of two to three times more than pharate fourth instar controls. Similarly, fourth instars that were destined to undergo precocious pupation attained a weight, as pharate pupae, that was approximately two times more than pharate fifth instar controls. More potent analogues of KK-42 may prove useful in controlling populations of 0. nubilalis by interfering with their growth, development, and metamorphosis. © 1995 Witey-Liss, Inc.
  • 1 This article is a US Government work and, as such, is, in the public domain in the United States of America.
  •   相似文献   

    6.
    Larvae of the bean blister beetle Epicauta gorhami Marseul (Coleoptera: Meloidae) feed on grasshopper eggs in soil and undergo hypermetamorphosis. This beetle undergoes larval diapause in the fifth instar as a pseudopupa, a form characteristic of hypermetamorphosis in meloid beetles. The effects of temperature, photoperiod and soil humidity on larval development of E. gorhami are examined in a population in Miyazaki, Japan, using egg pods of Locusta migratoria L. as food. At lower temperatures (20 and 22.5 °C), all larvae become pseudopupae, regardless of the photoperiod. By contrast, at higher temperatures (27.5 and 30 °C), almost all larvae pupate at the end of the fourth instar, again regardless of the photoperiod. A long‐day photoperiodic response occurs only at an intermediate temperature (25 °C): under an LD 12 : 12 h photocycle, all larvae enter diapause, although the diapause incidence tends to decrease as the day length becomes longer. Pseudopupae are immobile and remain in diapause for ≥120 days when they are kept under the same conditions, except that diapause terminates within a relatively short time at 30 °C. Although lower soil humidity retards post‐feeding development, soil humidity has no effect on the diapause incidence. On the basis of the short developmental period and diapause avoidance under summer conditions, it is suggested that this beetle partially produces two generations a year in southwestern Japan.  相似文献   

    7.
    Incorporation of cortisol, or various derivatives and analogues of cortisol, into the diet had no effect on the rate of growth of Tenebrio molitor. Injections of cortisol, or its derivatives, into fourth instar larvae of Schistocerca americana gregaria, had no effect on their rate of growth. The moult to fifth instar was normal. Administration in the diet, or injections of cortisol had no effect on the rate of growth of fourth and fifth instar larvae of Manduca sexta, or on the insect's uptake and utilization of food. The development of larvae to pupae and adults was unaffected. It is concluded, contrary to the findings of two previously published reports, that the vertebrate hormone cortisol does not affect the growth and development of insects.  相似文献   

    8.
    Abstract 1 Feeding behaviours, and lethal and sublethal (growth, development and food utilization) effects of Foray 48B, a commercial formulation of Bacillus thuringiensis (kurstaki), were investigated on fourth‐ and sixth‐instar spruce budworm larvae according to food nutritive quality. Nitrogen and soluble sugar content of artificial diets were modified to obtain three different qualities of food, simulating variations in nutritive quality of host tree. 2 Larval development times were longer for Bt‐treated larvae and pupal weights were reduced for sixth‐instar larvae only. Bt‐induced mortality levels were influenced by food quality. Ingested dose of Bt and feeding inhibition times were strongly affected by the Bt treatment, but food quality affected only fourth‐instar larvae. Except for food digestibility, nutritional indices were negatively affected by the Bt treatment and by the reduction in food quality. 3 Contrary to early treated larvae (fourth instar), larvae treated at the beginning of the sixth instar were not able to compensate for Bt injury and were consequently more affected by the Bt‐treatment both in terms of lethal and sublethal effects. 4 Bt efficacy was not directly related to the ingested dose. 5 Increase in larval vulnerability to Bt was more likely a consequence of a general stress induced by a less suitable food than a direct interaction between Bt and food nitrogen or sugar compounds. 6 The application of Bt on late‐instar larvae could be a successful operational strategy at low population levels when field sprays target the insect instead of foliage protection.  相似文献   

    9.
    R. J. Wood 《Genetica》1990,46(1):45-48
    Pecten spine number has been studied in larvae of Aedes aegypti exposed during development to low temperatures or to DDT at the fourth instar, both of which caused substantial mortality. But neither contingency caused stabilising selection for spine number, in contrast to what was observed in a previous study when larvae were exposed to scum on the surface of the rearing medium. — Two larval colour morphs, yellow and brown, did not differ in spine number.  相似文献   

    10.
    Larvae of the bean blister beetle, Epicauta gorhami, feed on only grasshopper eggs and undergo hypermetamorphosis with pseudopupal diapause in the fifth instar. Whether E. gorhami larvae enter pseudopupal diapause or pupate directly from the fourth instar is controlled by temperature and photoperiod. In nature, larvae are confronted with a significant variation in the availability of food, suggesting the possibility that feeding conditions may also affect the diapause incidence. Here, we addressed this issue by changing the feeding conditions in the fourth instar under conditions of 16 h light : 8 h dark (LD 16 : 8) at 25°C. Food deprivation reduced the length of instar and increased the tendency to pupate, leading to the early eclosion of a small adult. Even non‐feeding fourth‐instar larvae pupated. Regardless of the timing of food deprivation, the post‐feeding larval period was constant and equivalent to that of ad libitum‐fed larvae, suggesting that premature exhaustion of the food supply triggers the initiation of pupation. In agreement with these results, when larvae were fed on intact grasshopper egg pods of various sizes from four species, those that fed on smaller egg pods had a decreased tendency to pseudopupate (i.e., to enter diapause). Food‐deprived larvae showed a clearer photoperiodic response and had a shorter critical day‐length. Thus, in E. gorhami, feeding conditions do not affect pupation success, but do affect the tendency to pupate or pseudopupate. This is the first report of the occurrence of premature pupation in carnivorous insects. We discuss our findings in the context of the natural history and behavioral ecology of E. gorhami.  相似文献   

    11.
    Abstract: A method of distinguishing different larval instars of Liriomyza huidobrensis morphologically, using measurements of the cephalopharyngeal skeleton was developed. The growth ratios of cephalopharyngeal skeletons between first and second and second and third instar larvae were 1.80 and 1.47, respectively, enabling clear separation to be achieved for experimental work. Using this method the development rates of the immature stages of L. huidobrensis feeding on Lactuca sativa were determined under constant temperatures of 11, 16, 19, 26 and 28 ± 1°C and were shown to increase linearly with temperature over the range investigated. The theoretical lower threshold temperatures for development from oviposition to the end of each larval instar or pupal stage were 5.35, 6.30, 6.20 and 5.70°C, respectively. The overall threshold temperature for development from oviposition to 50% adult emergence (5.70°C) was used to calculate degree‐day (DD) requirements for development from oviposition to each larval instar or pupal eclosion, which were 84.3, 30.1, 58.9, 143.7 DD, respectively. The use of these data for optimizing the timing of application of control agents which are effective against specific developmental stages is discussed.  相似文献   

    12.
    Two experiments on the nymphal predation of Podisus maculiventris were conducted using Spodoptera litura larvae as prey. First experiment: The predator nymphs divided into three groups were reared individually from second instar to adult in a small vessel. Each nymph in the groups 1, 2 and 3 was allowed to attack the serially growing larvae (these were supplied at the rate of one per day) from 3-, 5- and 7-day old after hatching, respectively. The first prey used for the group 1 was so small that it was not only insufficient to satiate the predator but also was difficult to be searched out. But these disadvantages were soon recuperated due to the rapid growth of the prey and all nymphs could survive to adults. The survival rate of third and fourth instar nymphs in the group 3 was severely affected by vigorous counterattack of older prey larvae. Second experiment: The predator nymphs were individually reared either in a small vessel or in a large one at various rates of food supply (the prey larvae of 7-day old were used). The functional response curves obtained for each instar of the predator took a saturation type within a certain range of the prey density. The saturation level specific to each instar was generally higher for the predator reared in the large vessel than in the small one. The functional response of fourth and fifth instar nymphs was accelerated at a high prey density, viz. 16 larvae per vessel. Even at the low rate of food supply, viz. one larva per day per predator, the predator nymphs could survive to adults, but the size of resultant adults were abnormally small.  相似文献   

    13.
    ABSTRACT.
    • 1 Sweden has two disjunct populations of the speckled wood butterfly, Pararge aegeria L. The southern population has two generations per year but the central Swedish population is univoltine. When rearing larvae from central Sweden under normal photoperiodic conditions but at temperatures slightly above the ambient, 42% of the larvae developed directly and produced a second generation of adults the same summer. The egg—larval development time of the directly developing individuals was about 40 days, whereas that of the individuals developing along the univoltine pathway was about 100 days.
    • 2 Larvae of the central Swedish population normally aestivate during part of the summer even though abundant food is available. In the closely related Lasiommata petropolitana F., which is the only Swedish satyrid that overwinters in the pupal stage besides P.aegeria, larvae do not aestivate, indicating that there does not seem to be any obligatory association between pupal hibernation and larval aestivation.
    • 3 Development rates of aestivating and directly developing P.aegeria are equal up to the third larval instar. During the third and fourth instars, however, the development rate of aestivating individuals is retarded and females also have an additional fifth instar.
    • 4 Since the central Swedish P.aegeria have the capacity to develop directly, and the southern Swedish ones have the capacity to aestivate, the evidence indicates that the outcome of the cost/benefit balance of univoltine versus bivoltine development differs between the two areas.
      相似文献   

    14.
    Trials were conducted to study how spring Bacillus thuringiensis Berliner subsp. kurstaki treatments on apple may be timed to maximize the survival of parasitoids of the obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae), found in the southern interior of British Columbia, Canada. Orchard collections verified that second through fourth instar obliquebanded leafrollers were found in varying proportions from pink through the petal fall stage of apple development when spring B. thuringiensis treatments are applied vs. lepidopteran pests. Laboratory‐reared second through fourth instar obliquebanded leafrollers, unparasitized and parasitized by one of three native parasitoid species, were fed untreated apple leaves or leaves treated with B. thuringiensis. The highest mortality of unparasitized obliquebanded leafrollers occurred when fourth instars were exposed to B. thuringiensis‐treated leaves; B. thuringiensis‐induced mortality in the unparasitized second and third instars was less than 50%. The consumption of B. thuringiensis‐treated leaves by host larvae significantly increased the percentage of dead host larvae in all parasitized and unparasitized treatments. However, because of the low susceptibility of this leafroller species to B. thuringiensis, relatively high numbers (38–43%) of three obliquebanded leafroller parasitoid species were able to survive the consumption of B. thuringiensis by second and third instar host larvae. Fourth instar obliquebanded leafrollers were found at the full bloom and petal fall stage of apple development in the orchard, at which time B. thuringiensis treatments are recommended for optimal leafroller control. The highest parasitoid mortality due to host mortality was recorded in Apophua simplicipes Cresson (Hymenoptera: Ichneumonidae) and Macrocentrus linearis (Nees) (Hymenoptera: Braconidae), when the hosts were treated as fourth instars. Both of these parasitoids emerge from fifth and sixth instar obliquebanded leafrollers. Bacillus thuringiensis did not have as negative an impact on Apanteles polychrosidis Viereck (Hymenoptera: Braconidae), which emerges when the host is in the fourth instar. When leafroller mortality and parasitism were combined, the B. thuringiensis treatment did not significantly increase host elimination above that of parasitism alone, except for larvae parasitized by A. simplicipes that were in the fourth instar. The consumption of B. thuringiensis by unparasitized larvae was shown to slow larval development.  相似文献   

    15.
    The frequency distribution of the durations of development of 516 larvae of Adalia bipunctata is unimodal, and the fast‐ and slow‐developing larvae can be identified at the beginning of the fourth (=last) instar. To determine the advantages of fast and slow development, the survival, duration of development, growth and number of aphids consumed by fast‐ and slow‐developing fourth instar larvae fed different numbers aphids were recorded. The percentages of fast‐ and slow‐developing fourth instar larvae that survived when fed 0.5, 1 or an excess of aphids per day, surprisingly, did not differ. The slow‐developing larvae of both sexes took longer to complete their development than the fast‐developing larvae when fed 1 or an excess of aphids per day, and although the weights of the fast‐ and slow‐developing fourth instar larvae differed at the beginning of the instar, they did not differ at the end of this instar when fed 1 aphid per day. However, when reared on an excess of aphids per day, the adult weights of the fast‐developing individuals was greater than that of slow‐developing individuals. The average durations for which the larvae in the two groups survived when fed 0.5 aphids/day differed with the larvae of the fast‐developing individuals surviving for 9.8 ± 0.5 days and slow‐developing individuals 17 ± 1.3 days. Assuming that it is the rate of predator biomass increase, which is maximized by evolution, a model of the relationship between the rate of development/growth of a predator and that of its prey indicates that the optimum growth rate of a predator is positively associated with that of its prey. The evolutionary implications of these results are discussed.  相似文献   

    16.
    The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

    17.
    Previous studies which have tested the feeding preferences of shredders for fungal species and the food quality of fungi used detritus uniformly colonized by a fungus, which is not the case for decaying leaves in streams. It is not known whether shredders in different development stages exhibit variations in feeding preference and larval performance. This study examined the feeding preferences and the growth of the third and the fifth instars of Pycnopsyche gentilis larvae using fungal-colonized patches and whole leaves, respectively, having different fungal species compositions (Alatospora acuminata, Anguillospora filiformis, Articulospora tetracladia, Tetrachaetum elegans, and all species combined). The aquatic hyphomycetes used were co-dominant on leaves in the stream inhabited by the caddisfly. During 14 d of feeding, the larvae of both instars did not show significant differences in feeding preferences for the patches growing on oak leaves, although the third instar larvae were slightly more selective than the fifth instar larvae. When fed with maple leaves for 18 d, larval growth rates, gross growth efficiencies, and survivorship were not significantly different among the fungal treatments. However, the larval growth of both instars fed with fungal-colonized leaves was always significantly greater than the growth of larvae fed with diets of uncolonized leaves. The third instar larvae grew faster than the fifth instar larvae, but the growth efficiencies of the two instars were similar. These results suggest that P. gentilis larvae exhibit less selectivity in their feeding than other caddisfly shredders that have been examined and that the dominant fungi colonizing leaves in their habitat are similar in palatability and food quality for this shredder. Handling editor: B. Oertli  相似文献   

    18.
    Summary The cranefly, Tipula subnodicornis, emerges as an adult in the spring and has an annual life-cycle in the British Isles. This is maintained partly through the presence of a winter diapause but the response of development rate to temperature also acts to preserve the timing of the cycle. During development under constant temperature conditions in the laboratory the optimum temperature (taken as the temperature which promoted the most rapid development) dropped from 25°C, or above, in the egg stage to below 20°C in the late larval stages. It is suggested that at the warmer, southern limits of the geographical range rapid early development may be compensated by a retardation in late larval growth. In addition, the response of growth rate to change in temperature was small in the fourth, final, instar and resulted in low Q 10 values; 2.4 between 7° and 10°C, 1.5 between 10° and 15°C and 0.9 between 15° and 20°C. As the fourth instar comprises the greater part of the growth period, this has the effect of minimising the effect of temperature differences which are the result of differences of latitude or altitude. Even at optimum temperatures the growth period was prolonged and larvae in the field do not reach maximum weight, and the photosensitive stage, until late autum when short daylength promotes diapause. Subsequent development in the spring, before pupation and during the pupal period, showed a reversion to the higher Q 10 figures of the early stages in development.The development of final instar Tipula subnodicornis larvae is contrasted with that of Tipula melanoceros. Tipula melanoceros emerges as an adult in September and it is likely that it has an egg diapause. Consequently larval development is confined to a short period between April and late July and growth must be rapid during this period. Under constant temperature conditions in the laboratory the growth of final instar larvae showed a marked contrast to that of Tipula subnodicornis in that the response to temperature was large and remained positive over a wider temperature range.  相似文献   

    19.
    The parasitoidEucelatoria bryani Sabrosky regulates the larval behavior of its hostHelicoverpa zea (Boddie). Parasitized third, fourth and fifth instars burrow into the soil 0.7–3.4 days earlier than unparasitized larvae that normally enter the soil to pupate at the end of the fifth and final larval instar. Parasitized third instars molt once then burrow as fourth instars, one instar earlier than normal. WhenE. bryani pupariated on the soil surface in the field, none survived to the adult stage. However,E. bryani adults emerged from 49.2% of hosts that had burrowed into the soil. By accelerating the timing ofH. zea burrowing behavior and causing host larvae to enter the soil before death,E. bryani ensures its pupariation in an environment with improved protection against natural enemies and lethal temperatures.  相似文献   

    20.
    Directly developing larvae of the butterfly Lycaena hippothoe sumadiensis exhibited two growth strategies with one cohort passing four larval instars at high growth rates, and the other five instars at lower growth rates. The 4‐instar‐cohort displayed decreased development times, in combination with slightly reduced pupal and adult weights. In addition to adjustment of growth rate, omitting a larval instar may comprise a further mechanism to decrease development time when needed. Using the 4‐instar‐cohort, sex‐related differences in reaction norms were investigated over a temperature gradient. At high temperatures, protandrous males showed early emergence at a reduced size, whereas weight of females remained similar throughout. These differences suggest that large size is more important for female than for male fitness. The pattern is similar to that previously reported for alpine L. tityrus, indicating that sex‐specific reaction norms might be widespread in species living under severe time constraints.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号