首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When added to human blood serum, the iron-binding protein lactoferrin (LF) purified from breast milk interacts with ceruloplasmin (CP), a copper-containing oxidase. Selective binding of LF to CP is evidenced by the results of polyacrylamide gel electrophoresis, immunodiffusion, gel filtration, and affinity chromatography. The molar stoichiometry of CP:LF in the complex is 1:2. Near-uv circular dichroism spectra of the complex showed that neither of the two proteins undergoes major structural perturbations when interacting with its counterpart. K(d) for the CP/LF complex was estimated from Scatchard plot as 1.8 x 10(-6) M. The CP/LF complex is found in various fluids of the human body. Upon injection into rat of human LF, the latter is soon revealed within the CP/LF complex of the blood plasma, from where the human protein is substantially cleared within 5 h.  相似文献   

2.
We have previously shown that iron-containing human lactoferrin (LF) purified from breast milk is able to form both in vitro and in vivo a complex with ceruloplasmin (CP), the copper-containing protein of human plasma. Here we present evidence that the CP-LF complex is dissociated by high concentrations of NaCl, CaCl2, or EDTA, or by decreasing the pH to 4.7. In addition, DNA, bacterial lipopolysaccharide, and heparin can displace CP from its complex with LF. Antibodies to either of the two proteins also cause dissociation of the complex.  相似文献   

3.
Human lactoferrin, a component of the innate immune system, kills a wide variety of microorganisms including the Gram positive bacteria Streptococcus pneumoniae. Pneumococcal surface protein A (PspA) efficiently inhibits this bactericidal action. The crystal structure of a complex of the lactoferrin-binding domain of PspA with the N-lobe of human lactoferrin reveals direct and specific interactions between the negatively charged surface of PspA helices and the highly cationic lactoferricin moiety of lactoferrin. Binding of PspA blocks surface accessibility of this bactericidal peptide preventing it from penetrating the bacterial membrane. Results of site-directed mutagenesis, in vitro protein binding assays and isothermal titration calorimetry measurements corroborate that the specific electrostatic interactions observed in the crystal structure represent major associations between PspA and lactoferrin. The structure provides a snapshot of the protective mechanism utilized by pathogens against the host's first line of defense. PspA represents a major virulence factor and a promising vaccine candidate. Insights from the structure of the complex have implications for designing therapeutic strategies for treatment and prevention of pneumococcal diseases that remain a major public health problem worldwide.  相似文献   

4.
The copper-binding protein ceruloplasmin oxidizes ferrous iron to ferric iron, an action that is critical for the binding of iron to transferrin in plasma. Ceruloplasmin, in common with ferritin and transferrin, is an acute-phase protein that is altered by inflammation. We sought to identify interrelationships between the copper and iron systems by measuring copper, ceruloplasmin, ferroxidase, ferritin, transferrin, iron, and iron-binding capacity in a group of hemodialysis patients. We looked for evidence of inflammation and free-radical injury by assaying for protein carbonyl groups, protein pyrrolation, di-tyrosine, and advanced oxidation protein products. Our findings were compatible with an active inflammatory state that affected both iron and copper metabolism. Transferrin levels were low, whereas ceruloplasmin levels were elevated compared to normal. Copper concentration was increased proportional to ceruloplasmin. Several variables including ceruloplasmin and transferrin were observed to correlate significantly with the level of pyrrolated protein. The data suggest that posttranslational modification of circulating proteins may affect their structural, enzymatic, and ligand-binding properties. Abnormalities in copper metabolism and their influence on iron handling in renal failure are complex and will require additional study before their importance can be defined.  相似文献   

5.
Incubation of human ceruloplasmin with physiological concentrations of chloride at neutral pH invariably caused dramatic changes of both the spectroscopic and the functional properties of the protein. The optical intensity at 610 nm increased up to 60%, with a concomitant decrease at 330 nm and the appearance of new bands between 410 and 500 nm. Signals previously undetectable appeared in the EPR spectrum. On the basis of computer simulations, they were interpreted as stemming from an oxidized type 1 copper site and from a half-reduced type 3 copper pair. Removal of chloride completely restored the original optical and EPR lineshapes. Hydrogen peroxide, added to ceruloplasmin in the presence of chloride, was able to capture the electron of the half-reduced type 3 site and to yield a protein insensitive to subsequent removal and readdition of the anion. As a whole, the spectroscopic data indicate that a blue site is partially reduced in the resting protein and that, upon binding of chloride, human ceruloplasmin undergoes a structural change leading to displacement of an electron from the reduced type 1 site to the type 3 site pair. Chloride dramatically affected the catalytic efficiency of human ceruloplasmin. At neutral pH, the anion was an activator of the oxidase activity, being able to enhance up to tenfold the catalytic rate. AtpH < 6, in line with all previous reports, chloride strongly inhibited the activity. At intermediate pH values, i.e., around 6, the effect was composite, with an activating effect at low concentration and an inhibitory effect at higher concentration. Since chloride is present at very high concentrations in the plasma, these results suggest that human ceruloplasmin is, in the plasma, under control of this anion.  相似文献   

6.
Copper-containing plasma protein ceruloplasmin (Cp) forms a complex with lactoferrin (Lf), an iron-binding protein, and with the heme-containing myeloperoxidase (Mpo). In case of inflammation, Lf and Mpo are secreted from neutrophil granules. Among the plasma proteins, Cp seems to be the preferential partner of Lf and Mpo. After an intraperitoneal injection of Lf to rodents, the “Cp–Lf” complex has been shown to appear in their bloodstream. Cp prevents the interaction of Lf with protoplasts of Micrococcus luteus. Upon immunoprecipitation of Cp, the blood plasma becomes depleted of Lf and in a dose-dependent manner loses the capacity to inhibit the peroxidase activity of Mpo, but not the Mpo-catalyzed oxidation of thiocyanate in the (pseudo)halogenating cycle. Antimicrobial effect against E. coli displayed by a synergistic system that includes Lf and Mpo–H2O2–chloride, but not thiocyanate, as the substrate for Mpo is abrogated when Cp is added. Hence, Cp can be regarded as an anti-inflammatory factor that restrains the halogenating cycle and redirects the synergistic system Mpo–H2O2–chloride/thiocyanate to production of hypothiocyanate, which is relatively harmless for the human organism. Structure and functions of the “2Cp–2Lf–Mpo” complex and binary complexes Cp–Lf and 2Cp–Mpo in inflammation are discussed.  相似文献   

7.
M K Cha  I H Kim 《Biochemistry》1999,38(37):12104-12110
Ceruloplasmin, a blue multi-copper alpha(2)-glycoprotein found in the plasma of all vertebrates, is capable of oxidizing aromatic amines and ferrous iron. Here, we report that human ceruloplasmin exhibits an alkyl hydroperoxide peroxidase activity, which is independent of the oxidase activity. The site-specific modification of the sulfhydryl of cysteine at position 699 in ceruloplasmin completely abolished the antioxidant activity, suggesting that ceruloplasmin is a peroxidase with a cysteinyl thiol as a functional nucleophile. The crystal structure of human ceruloplasmin reveals that the domain containing Cys-699 is apart from the multi-copper complex domains. Taken together, these data suggest that ceruloplasmin has a distinct active site for a glutathione-linked peroxidase activity apart from the copper complex site exerting ferroxidase activity.  相似文献   

8.
In this work, the diameters of protein complexes formed upon interaction of ceruloplasmin (CP) with lactoferrin (LF) and myeloperoxidase (MPO) were determined. Gage dependence of the diameter of protein particles (myoglobin, albumin, LF, CP, MPO, aldolase, ferritin) on their molecular mass logarithm was calculated. The diameter of a complex formed upon mixing CP and LF was 8.4 nm, which is in line with the radius of gyration obtained previously when the 1CP-1LF complex was studied by small-angle X-ray scattering. The diameter of a complex formed upon interaction of CP with MPO is 9.8 nm, corresponding to the stoichiometry 2CP: 1MPO. The diameter of a complex formed when LF is added to the 2CP-1MPO complex is 10.7 nm. The latter is consistent with the notion of a pentameric structure 2LF-2CP-1MPO with molecular mass of about 585 kDa.  相似文献   

9.
A pink-colored iron-binding protein has been found in large amount in human seminal plasma and identified as a lactoferrin isoform. Its purification, by a modification of a three-step chromatography procedure developed in an attempt to purify a ribonuclease from the same fluid, provided about 15-18 mg of pure protein from 100 ml of seminal plasma. Despite its ability to bind a ribonuclease ligand during the affinity step, the iron-binding protein did not display any detectable RNase activity in a standard assay with yeast RNA as substrate. It showed an apparent molecular weight of 76 kDa and resulted to be quite similar, if not identical, to human milk lactoferrin in many respects. Its N-terminal sequence (31 amino acid residues) starting with Arg-3 was identical to that of one of the N-terminally truncated lactoferrin variants isolated from human milk. Moreover, the amino acid sequence of a number of peptides, which represented about 23% of the entire sequence, has been also shown to be identical to that of the corresponding peptides of human milk lactoferrin. Double diffusion analysis revealed full recognition by antibodies anti-human milk lactoferrin of the human seminal plasma protein. Using immunoblotting analysis, both human milk lactoferrin and human seminal protein were recognized by antibodies anti-milk lactoferrin. When tested for its iron binding capacity, with Fe-NTA as iron donor, the protein purified was able to bind iron up to 100% saturation, as judged by absorbance at 465 nm.  相似文献   

10.
Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage.  相似文献   

11.
Lactoferrin Is the Major Deoxyribonuclease of Human Milk   总被引:1,自引:0,他引:1  
Lactoferrin is the major iron-transferring protein of human barrier fluids such as blood and milk. It is a polyfunctional protein capable of binding DNA exposed on the surface of various cells. Electrophoretically homogenous lactoferrin was prepared by sequential chromatography of human milk proteins on DEAE-cellulose, heparin-Sepharose, and Sepharose containing immobilized anti-lactoferrin antibodies. By subsequent chromatography on Blue Sepharose the resulting lactoferrin was fractionated into several subfractions with different affinity for the sorbent, and this was associated with separation of additional lactoferrin peaks with DNase activity from the main peak. By various techniques, in particular, by in situ testing the DNase activity of lactoferrin in a DNA-containing gel after SDS-electrophoresis, hydrolysis of DNA was for the first time shown to be an intrinsic property of lactoferrin. The substrate specificity of lactoferrin in hydrolysis of DNA was different from specificities of known human DNases. Hydrolysis of DNA was activated by bivalent metal ions and also by ATP and NAD. Unlike the main fraction of lactoferrin with the highest affinity for Blue Sepharose, all protein subfractions with DNase activity were cytotoxic and suppressed growth of human and mouse tumor cell lines.  相似文献   

12.
13.
The electron paramagnetic spectrum of human plasma is dominated, in the g = 2 region, by resonances from copper atoms bound to ceruloplasmin, and does not reveal the fraction of copper normally associated with albumin, except in a few cases, where a copper-albumin signal increases with time after blood withdrawal. This copper-albumin complex is responsible for a resonance at a g value below g = 2 in the spectrum of human serum, which has been recently attributed to a modified form of type 2 copper bound to ceruloplasmin [Rylkov, V.V., Tarasiev, M.Y. & Moshkov, K.A. (1991) Eur. J. Biochem. 197, 185-189]. In the plasma, copper associated to albumin comes from ceruloplasmin. Purified ceruloplasmin is unable to exchange copper with albumin, either purified or in plasma. It can not be ruled out that some serum components trigger the metal exchange, in a defence mechanism operating when ceruloplasmin leaks, by unknown processes, its copper content before discharging the metal into the various organs.  相似文献   

14.
A significant increase in the myeloperoxidase (MPO) activity has been found in plasma of patients with stable angina and with acute coronary syndrome (ACS) in comparison with the control group. MPO concentration was significantly increased in plasma of ACS patients. Reduced MPO activity in the treated ACS patients correlated with a favorable outcome of the disease. Generally, changes in plasma MPO concentration coincided with changes in lactoferrin concentration thus confirming the role of neutrophil degranulation in the increase of plasma concentrations of these proteins. The increase in MPO activity was obviously determined by modification of the MPO protein caused by reactive oxygen species and halogen in the molar ratio of 1: 25 and 1: 50. The decrease in plasma MPO activity may be associated with increased plasma concentrations of the physiological inhibitor of its activity, ceruloplasmin, and also with modification of the MPO protein with reactive oxygen species and halogen at their molar ratio of 1: 100 and higher. Thus, MPO activity may be used for evaluation of effectiveness of the treatment of cardiovascular diseases.  相似文献   

15.
Atlantic salmon (Salmo salar L.) were fed on a control diet or experimental diets containing betaine (15 mg g-1) or dimethylglycine (DMG, I mg g-1 or 5 mg g-1). After 10 weeks of feeding, resistance to infection was assessed following inoculation with Vibrio anguillarum. Total blood and differential leucocyte counts were made, and plasma lysozyme and ceruloplasmin were assayed as non-specific humoral factors. The mortality during the bacterial exposure was of the same magnitude in all feeding groups. Betaine or DMG had no effect on the 'basal' levels of plasma total protein, lysozyme or ceruloplasmin, but 3 days postinjection the lysozyme and ceruloplasmin levels were higher in the control group compared with the experimental groups. In both DMG groups, the lymphocyte response took place 1-2 weeks earlier than in the control or betaine supplemented group indicating that DMG has an immunomodulating effect on salmon.  相似文献   

16.
When lactoferrin (LF) and myeloperoxidase (MPO) are added to ceruloplasmin (CP), a CP-LF-MPO triple complex forms. The complex is formed under physiological conditions, but also in the course of SDS-free PAGE. Polyclonal antibodies to both LF and MPO displace the respective proteins from the CP-LF-MPO complex. Similar replacement is performed by a PACAP38 fragment (amino acids 29-38) and protamine that bind to CP. Interaction of LF and MPO with CP-Sepharose is blocked at ionic strength above 0.3 M NaCl and at pH below 4.1 (LF) and 3.9 (MPO). Two peptides (amino acids 50-109 and 929-1012) were isolated by affinity chromatography from a preparation of CP after its spontaneous proteolytic cleavage. These peptides are able to displace CP from its complexes with LF and MPO. Both human and canine MPO could form a complex when mixed with CP from seven mammalian species. Upon intravenous injection of human MPO into rats, the rat CP-human MPO complex could be detected in plasma. Patients with inflammation were examined and CP-LF, CP-MPO, and CP-LF-MPO complexes were revealed in 80 samples of blood serum and in nine exudates from purulent foci. These complexes were also found in 45 samples of serum and pleural fluid obtained from patients with pleurisies of various etiology.  相似文献   

17.
Structure, function and flexibility of human lactoferrin   总被引:2,自引:0,他引:2  
X-ray structure analyses of four different forms of human lactoferrin (diferric, dicupric, an oxalate-substituted dicupric, and apo-lactoferrin), and of bovine diferric lactoferrin, have revealed various ways in which the protein structure adapts to different structural and functional states. Comparison of diferric and dicupric lactoferrins has shown that different metals can, through slight variations in the metal position, have different stereochemistries and anion coordination without any significant change in the protein structure. Substitution of oxalate for carbonate, as seen in the structure of a hybrid dicupric complex with oxalate in one site and carbonate in the other, shows that larger anions can be accommodated by small side-chain movements in the binding site. The multidomain nature of lactoferrin also allows rigid body movements. Comparison of human and bovine lactoferrins, and of these with rabbit serum transferrin, shows that the relative orientations of the two lobes in each molecule can vary; these variations may contribute to differences in their binding properties. The structure of apo-lactoferrin demonstrates the importance of large-scale domain movements for metal binding and release and suggests that in solution an equilibrium exists between open and closed forms, with the open form being the active binding species. These structural forms are shown to be similar to those seen for bacterial periplasmic binding proteins, and lead to a common model for the various steps in the binding process.  相似文献   

18.
Several features of the catalytic oxidation of cysteine by ceruloplasmin and nonenzymic Cu(II) at pH 7 have been compared. The oxidation of cysteine by ceruloplasmin has several properties in common with the Cu(II) catalyzed oxidation of cysteine: pH maxima, thiol specificity, lack of inhibition by anions, and high sensitivity to inhibition by copper complexing reagents. These two catalysts differed in their molecular activity, in their ability to oxidize penicillamine and thioglycolate, and in that H2O2 was produced as a primary product only during Cu(II) oxidation. The oxidation of cysteine by ceruloplasmin was compared also with the ceruloplasmin catalyzed oxidation of o-dianisidine, a classical pH 5.5 substrate. The mechanism of the oxidation of cysteine by ceruloplasmin at pH 7 differed from that of o-dianisidine oxidation because the latter substrate was inhibited by anions but not by copper complexing agents. Spectral and other data suggest that during the ceruloplasmin reaction with cysteine there is a one electron transfer from cysteine to ceruloplasmin resulting in the specific reduction of type lb Cu(II).  相似文献   

19.
Lactoferrin, the main iron-binding protein of milk, has biological activities that are essential for the newborn and are beneficial for adults. Given this beneficial effect, there is broad interest in exogenous sources of lactoferrin in human nutrition. Consequently, several transgenic approaches to produce lactoferrin have been achieved. However, the activity of heterologous lactoferrin cannot be assumed to identically mimic that of the homologous protein. Human lactoferrin obtained from yeast, transgenic cows, and rice has met the criteria of structural similarity, high yield, and ease of protein isolation. Human lactoferrin from Aspergillus awamori has been mainly directed to therapeutic uses with advanced phases of clinical trials currently in progress. In contrast, human lactoferrin produced in transgenic cows and rice brings the clear advantage of origins compatible with use in foods, although the approval for these applications is still in process.  相似文献   

20.
The binding of 125I-lactoferrin to HT29-D4 cells, a clone of HT29 cells, was studied and compared to the binding of 125I-transferrin to the same cells. The binding of the two iron-transport proteins is saturable and reversible suggesting the presence of specific receptors for each protein. Scatchard analysis suggests the existence of binding sites for lactoferrin with the relatively high equilibrium dissociation constant, Kd1 of 408 nM. Additionally, the cell is capable of binding large amounts of lactoferrin with very low affinity, probably in a non-receptor intermediate fashion. The dissociation constant of transferrin and its receptor was calculated 9.29 nM which corresponds well to values found in the literature. In contrast to lactoferrin, the cell was capable of binding only low amounts of transferrin in a non-receptor intermediate fashion. After chemical crosslinking of lactoferrin to the cell surface, the radiolabeled lactoferrin was found in a complex of molecular mass 300 kDa. Crosslinking of transferrin resulted in a complex of much higher molecular mass. These data clearly show a binding site for lactoferrin different from the transferrin receptor. Only if competition experiments were performed with a high molar excess of both ligand proteins did a small percentage of either of the two ligands crossreact with the receptor for the other, possibly due to a structural similarity of the two glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号