首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homozygous mice overexpressing Claudin-6 (Cldn6) exhibit a perturbation in the epidermal differentiation program leading to a defective epidermal permeability barrier (EPB) and dehydration induced death ensuing within 48 h of birth [Turksen, K., Troy, T.C., 2002. Permeability barrier dysfunction in transgenic mice overexpressing claudin 6. Development 129, 1775-1784]. Their heterozygous counterparts are also born with an incomplete EPB; however, barrier formation continues after birth and normal hydration levels are achieved by postnatal day 12 allowing survival into adulthood. Heterozygous Inv-Cldn6 mice exhibit a distinct coat phenotype and histological analysis shows mild epidermal hyperkeratosis. Expression of K5 and K14 is aberrant, extending beyond the basal layer into the suprabasal layer where they are not co-localized suggesting that their expression is uncoupled. There is also atypical K17 and patchy K15 expression in the basal layer with no K6 expression in the interfollicular epidermis; together with marked changes in late differentiation markers (e.g. profilaggrin/filaggrin, loricrin, transglutaminase 3) indicating that the normal epidermal differentiation program is modified. The expression compartment of various Cldns is also perturbed although overall protein levels remained comparable. Most notably induction of Cldn5 and Cldn8 was observed in the Inv-Cldn6 epidermis. Heterozygous Inv-Cldn6 animals also exhibit subtle alterations in the differentiation program of the hair follicle including a shorter anagen phase, and altered hair type distribution and length compared to the wild type; the approximately 20% increase in zig-zag hair fibers at the expense of guard hairs and the approximately 30% shorter guard hairs contribute to coat abnormalities in the heterozygous mice. In addition, the transgenic hair follicles exhibit a decreased expression of K15 as well as some hair-specific keratins and express Cldn5 and Cldn18, which are not detectable in the wild type. These data indicate that Cldn6 plays a role in the differentiation processes of the epidermis and hair follicle and supports the notion of a link between Cldn regulation and EPB assembly/maintenance as well as the hair cycle.  相似文献   

2.
The calcium sensing receptor (CaSR) has emerged as an important mediator of a wide range of Ca(2+)-dependent physiological responses (Ca(2+) signaling) in various tissues. To explore the role of CaSR in the epidermis, we utilised the keratin 14 promoter to express CaSR cDNA constitutively in the basal cells of the stratified squamous epithelium of transgenic mice. Analysis of the transgenic mice revealed that a sensitized response to CaSR signaling accelerates the epidermal differentiation program with the precocious formation of the epidermal permeability barrier (EPB) during development and an accelerated hair growth at birth. Our observations indicate that overexpression of CaSR in the undifferentiated basal cells leads to changes in the differentiation program of the transgenic epidermis, including the stimulation of keratins 1 and 6 as well as the overexpression of several markers of terminal differentiation such as filaggrin, loricrin and involucrin. Our data suggest that the observed modifications in the differentiation pathway are a consequence of a CaSR-induced enhancement of Ca(2+) signaling involving cross-talk with other signaling pathways (e.g. EGF and Wnt/Ca(2+)). These studies provide new insights into the role of CaSR in epidermal differentiation including EPB development and hair follicle morphogenesis.  相似文献   

3.
Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.  相似文献   

4.
It is widely recognized that the claudin (Cldn) family of four tetraspan transmembrane proteins is crucial for tight junction assembly and permeability barrier function; however, the precise role of the tail and loop domains in Cldn function is not understood. We hypothesized that the cytoplasmic tail domain of Cldn6 is crucial for membrane targeting and hence epidermal permeability barrier (EPB) formation. To test this hypothesis via a structure-function approach, we generated a tail deletion of Cldn6 (CDelta187) and evaluated its role in epidermal differentiation and EPB formation through its forced expression via the involucrin (Inv) promoter in the suprabasal compartment of the transgenic mouse epidermis. Even though a functional barrier formed, Inv-CDelta187 mice displayed histological and biochemical abnormalities in the epidermal differentiation program and stimulation of epidermal cell proliferation in both the basal and suprabasal compartments of the interfolliclar epidermis, leading to a thickening of the epidermis after 1 week of age that persisted throughout life. Although some membrane localization was evident, our studies also revealed a significant amount of not only Cldn6 but also Cldn10, Cldn11, and Cldn18 in the cytoplasm of transgenic epidermal cells as well as the activation of a protein-unfolding pathway. These findings demonstrate that the overexpression of a tail truncation mutant of Cldn6 mislocalizes Cldn6 and other Cldn proteins to the cytoplasm and triggers a postnatal increase in proliferation and aberrant differentiation of the epidermis, emphasizing the importance of the Cldn tail domain in membrane targeting and function in vivo.  相似文献   

5.
Emerging evidence supports the notion that claudins (Cldns) are dynamically regulated under normal conditions to respond to the selective permeability requirements of various tissues, and that their expression is developmentally controlled. We describe the localization of those Cldns that we have previously demonstrated to be functionally important in epidermal differentiation and the formation of the epidermal permeability barrier, e.g., Cldn1, Cldn6, Cldn11, and Cldn18, and the presence of Cldn3 and Cldn5 in various neonatal mouse epithelia including the epidermis, nail, oral mucosa, tongue, and stomach. Cldn1 is localized in the differentiated and/or undifferentiated compartments of the epidermis and nail and in the dorsal surface of the tongue and glandular compartment of the stomach but is absent from the oral mucosa and the keratinized compartment of the stomach. Cldn3 is present in the basal cells of the nail matrix and both compartments of the murine stomach but not in the epidermis, oral mucosa, or tongue. Cldn5 is found in the glandular compartment of the stomach but not in the epidermis, nail unit, oral mucosa, forestomach, and tongue. Cldn6, Cldn11, and Cldn18 occur in the differentiating suprabasal compartment of the epidermis, nail, and oral mucosa and in the dorsal and ventral surfaces of the tongue and the keratinized squamous epithelium of the stomach. The simple columnar epithelium of the glandular stomach stains for Cldn18 and reveals a non-membranous pattern for Cldn6 and Cldn11 expression. Our results demonstrate differential Cldn protein profiles in various epithelial tissues and their differentiation stages. Although the molecular mechanisms regulating Cldn expression are unknown, elucidation of their differential localization patterns in tissues with diverse permeability requirements should provide a better understanding of the role of tight junctions in tissue function. This work was supported by a research grant from the Canadian Institutes of Health Research (MOP-69087).  相似文献   

6.
7.
While the important role of calcium (Ca++) signaling is fundamental in epidermal cell physiology, a detailed knowledge of precisely how epidermal cells respond to Ca++ levels is not clear. Using peptide-specific antibodies that we generated, we set out to evaluate the temporal and spatial distribution pattern of the Ca++-sensing receptor (CaSR) during epidermogenesis and to assess its involvement in the mature epidermis (e.g., in acute injury and tumorigenesis). Our data indicate a developmentally regulated expression of CaSR: up-regulation occurs in specific epidermal cells and cell layers in normal development or in response to injury when epidermal cells are induced to undergo commitment and early differentiation events, and down-regulation occurs in terminal differentiation stages. These results provide a new perspective on the role of the CaSR in these processes and describe a novel tool for evaluating Ca++-mediated epidermal differentiation.  相似文献   

8.
Non-melanoma skin cancer is the most frequent type of cancer in humans. In this study we demonstrate that elevated IKKα expression in murine epidermis increases the malignancy potential of skin tumors. We describe the generation of transgenic mice overexpressing IKKα in the basal, proliferative layer of the epidermis and in the outer root sheath of hair follicles. The epidermis of K5-IKKα transgenic animals shows several alterations such as hyperproliferation, mislocalized expression of integrin-α6 and downregulation of the tumor suppressor maspin. Treatment of the back skin of mice with the mitogenic agent 12-O-tetradecanoylphorbol-13-acetate causes in transgenic mice the appearance of different preneoplastic changes such as epidermal atypia with loss of cell polarity and altered epidermal tissue architecture, while in wild type littermates this treatment only leads to the development of benign epidermal hyperplasia. Moreover, in skin carcinogenesis assays, transgenic mice carrying active Ha-ras (K5-IKKα-Tg.AC mice) develop invasive tumors, instead of the benign papillomas arising in wild type-Tg-AC mice also bearing an active Ha-ras. Therefore we provide evidence for a tumor promoter role of IKKα in skin cancer, similarly to what occurs in other neoplasias, including hepatocarcinomas and breast, prostate and colorectal cancer. The altered expression of cyclin D1, maspin and integrin-α6 in skin of transgenic mice provides, at least in part, the molecular bases for the increased malignant potential found in the K5-IKKα skin tumors.  相似文献   

9.
10.
11.
Members of the transforming growth factor-beta (TGF-beta) superfamily are critical regulators for epithelial growth and can alter the differentiation of keratinocytes. Transduction of TGF-beta signaling depends on the phosphorylation and activation of Smad proteins by heteromeric complexes of ligand-specific type I and II receptors. To understand the function of TGF-beta and activin-specific Smad, we generated transgenic mice that overexpress Smad2 in epidermis under the control of keratin 14 promoter. Overexpression of Smad2 increases endogenous Smad4 and TGF-beta 1 expression while heterozygous loss of Smad2 reduces their expression levels, suggesting a concerted action of Smad2 and -4 in regulating TGF-beta signaling during skin development. These transgenic mice have delayed hair growth, underdeveloped ears, and shorter tails. In their skin, there is severe thickening of the epidermis with disorganized epidermal architecture, indistinguishable basement membrane, and dermal fibrosis. These abnormal phenotypes are due to increased proliferation of the basal epidermal cells and abnormalities in the program of keratinocyte differentiation. The ectodermally derived enamel structure is also abnormal. Collectively, our study presents the first in vivo evidence that, by providing an auto-feedback in TGF-beta signaling, Smad2 plays a pivotal role in regulating TGF-beta-mediated epidermal homeostasis.  相似文献   

12.
Summary Sentence: Conditional ablation of AP-2γ results in a delay in skin development and abnormal expression of p63, K14, K1, filaggrin, repetin and secreted Ly6/Plaur domain containing 1, key genes required for epidermal development and differentiation.The development of the epidermis, a stratified squamous epithelium, is dependent on the regulated differentiation of keratinocytes. Differentiation begins with the initiation of stratification, a process tightly controlled through proper gene expression. AP-2γ is expressed in skin and previous research suggested a pathway where p63 gene induction results in increased expression of AP-2γ, which in turn is responsible for induction of K14. This study uses a conditional gene ablation model to further explore the role of AP-2γ in skin development. Mice deficient for AP-2γ exhibited delayed expression of p63, K14, and K1, key genes required for development and differentiation of the epidermis. In addition, microarray analysis of E16.5 skin revealed delayed expression of additional late epidermal differentiation genes: filaggrin, repetin and secreted Ly6/Plaur domain containing 1, in mutant mice. The genetic delay in skin development was further confirmed by a functional delay in the formation of an epidermal barrier. These results document an important role for AP-2γ in skin development, and reveal the existence of regulatory factors that can compensate for AP-2γ in its absence.  相似文献   

13.
The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage‐dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co‐repressor complex function, increased levels of c‐Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.  相似文献   

14.
Epidermal growth factor receptor (EGFR) is a key regulator of keratinocyte biology. However, the physiological role of EGFR in vivo has not been well established. To analyze the role of EGFR in skin, we have generated transgenic mice expressing an EGFR dominant negative mutant in the basal layer of epidermis and outer root sheath of hair follicles. Mice expressing the mutant receptor display short and waved pelage hair and curly whiskers during the first weeks of age, but subsequently pelage and vibrissa hairs become progressively sparser and atrophic. Eventually, most mice present severe alopecia. Histological examination of the skin of transgenic mice shows striking alterations in the development of hair follicles, which fail to enter into catagen stage. These alterations eventually lead to necrosis and disappearance of the follicles, accompanied by strong infiltration of the skin with inflammatory elements. The interfollicular epidermis of these mice shows marked hyperplasia, expression of hyperproliferation-associated keratin K6 and increased 5-bromo-2-deoxyuridine incorporation. EGFR function was inhibited in transgenic skin keratinocytes, since in vivo and in vitro autophosphorylation of EGFR was almost completely abolished on EGF stimulation. These results implicate EGFR in the control of hair cycle progression, and provide new information about its role in epidermal growth and differentiation.  相似文献   

15.
Epidermal differentiation is characterized by a series of coordinated morphological and biochemical changes which result in a highly specialized, highly organized, stratified squamous epithelium. Among the specific markers expressed in differentiating epidermis are (a) two early spinous cell proteins, keratins 1 and 10 (K1 and K10); and (b) two later granular cell proteins, filaggrin and a cornified envelope precursor (CE). In vitro, epidermal basal cells are selectively cultured in 0.05 mM Ca2+ medium, and terminal differentiation is induced when the Ca2+ concentration is increased to 1 mM. However, only a small fraction of the cells express the markers K1, K10, CE, or filaggrin in the higher Ca2+ medium. To explore the factors required for marker expression, cultured epidermal cells were exposed to intermediate Ca2+ concentrations and extracts were analyzed using specific antibody and nucleic acid probes for the four markers of interest. These studies revealed that marker expression was enhanced at a restricted concentration of Ca2+ in the medium of 0.10-0.16 mM. At this Ca2+ concentration, both protein and mRNA levels for each marker were substantially increased, whereas at higher or lower Ca2+ concentrations they were diminished or undetected. The percentage of cells expressing each marker was increased two- to threefold in the permissive Ca2+ medium as determined by immunofluorescence analysis. This optimal level of Ca2+ was required both to initiate and sustain marker expression. At the permissive Ca2+ concentration, expression of the markers was sequential and similar to the order of appearance in vivo. K1 was expressed within 8-12 h and K10 was expressed in the ensuing 12-24-h period. CE and filaggrin were expressed in the subsequent 24 h. Inhibition of K1 expression by cycloheximide suggested that an inducible protein was involved. Other investigators have determined that a shallow Ca2+ gradient exists in epidermis, where the basal cells and spinous cells are in a Ca2+ environment substantially below serum Ca2+ levels. These in vitro results suggest that the Ca2+ environment is a fundamental regulator of expression of epidermal differentiation markers and provide an explanation for the existence of the Ca2+ gradient in vivo.  相似文献   

16.
Jarid2 is required for the genomic recruitment of the polycomb repressive complex-2 (PRC2) in embryonic stem cells. However, its specific role during late development and adult tissues remains largely uncharacterized. Here, we show that deletion of Jarid2 in mouse epidermis reduces the proliferation and potentiates the differentiation of postnatal epidermal progenitors, without affecting epidermal development. In neonatal epidermis, Jarid2 deficiency reduces H3K27 trimethylation, a chromatin repressive mark, in epidermal differentiation genes previously shown to be targets of the PRC2. However, in adult epidermis Jarid2 depletion does not affect interfollicular epidermal differentiation but results in delayed hair follicle (HF) cycling as a consequence of decreased proliferation of HF stem cells and their progeny. We conclude that Jarid2 is required for the scheduled proliferation of epidermal stem and progenitor cells necessary to maintain epidermal homeostasis.  相似文献   

17.
18.
Recently we demonstrated a strong induction of activin expression after skin injury, suggesting a function of this transforming growth factor-beta family member in wound repair. To test this possibility, we generated transgenic mice that overexpress the activin betaA chain in the epidermis under the control of a keratin 14 promoter. The transgenic mice were significantly smaller than control littermates, and they had smaller ears and shorter tails. In their skin, the fatty tissue was replaced by connective tissue and a severe thickening of the epidermis was found. The spinous cell layer was significantly increased, and the epidermal architecture was highly disorganized. These histological abnormalities seem to result from increased proliferation of the basal keratinocytes and abnormalities in the program of keratinocyte differentiation. After skin injury, a significant enhancement of granulation tissue formation was detected in the activin-overexpressing mice, possibly as a result of premature induction of fibronectin and tenascin-C expression. These data reveal novel activities of activin in the regulation of keratinocyte proliferation and differentiation as well as in dermal fibrosis and cutaneous wound repair.  相似文献   

19.
Keratins K1 and K10 represent the major differentiation products of the maturing epidermal keratinocytes. Primary epidermal cell cultures from newborn K1 transgenic mice containing a 12-kilobase human K1 genomic fragment were established in order to examine the expression of both human and mouse K1 in the presence of known modulators of epidermal differentiation. Elevated levels of Ca2+ in the culture medium induced both mouse K1 and human K1. Supplementing the medium with retinoic acid or 12-O-tetradecanoylphorbol-13-acetate or introducing a Harvey viral ras oncogene (v-rasHa) into the cells completely suppressed mouse K1 but not human K1. Our results suggest that: (a) the human 12-kilobase insert contains all the necessary cis-acting elements to respond to the Ca2+ signal, and (b) other cis-acting elements, not present within this insert, may function independently to regulate the response of K1 to retinoids, 12-O-tetradecanoylphorbol-13-acetate, and v-rasHa transformation. This transgenic model provides an approach to identify elements required for the regulation of an epidermal differentiation-specific gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号