首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the cheek pouch of anesthetized male hamsters, microiontophoresis of Ach (endothelium-dependent vasodilator) or phenylephrine (PE; smooth muscle-specific vasoconstrictor) onto an arteriole (resting diameter, 30-40 microm) evokes vasodilation or vasoconstriction (amplitude, 15-25 microm), respectively, that conducts along the arteriolar wall. In previous studies of conduction, endothelial and smooth muscle layers of the arteriolar wall have remained intact. We tested whether selective damage to endothelium or to smooth muscle would disrupt the initiation and conduction of vasodilation or vasoconstriction. Luminal (endothelial) or abluminal (smooth muscle) light-dye damage was produced within an arteriolar segment centered 500 microm upstream from the distal site of stimulation; conducted responses (amplitude, 10-15 microm) were observed at a proximal site located 1,000 microm upstream. Endothelial damage abolished local responses to ACh in the central segment without affecting those to PE. Nevertheless, ACh delivered at the distal site evoked vasodilation that conducted through the central segment and appeared unhindered at the proximal site. Smooth muscle damage inhibited responses to PE in the central segment and abolished the conduction of vasoconstriction but did not affect conducted vasodilation. We suggest that for cheek pouch arterioles in vivo, vasoconstriction to PE is initiated and conducted within the smooth muscle layer alone. In contrast, once vasodilation to ACh is initiated via intact endothelial cells, the signal is conducted along smooth muscle as well as endothelial cell layers.  相似文献   

2.
ACh and KCl stimulate vasomotor responses that spread rapidly and bidirectionally along arteriole walls, most likely via spread of electric current or Ca2+ through gap junctions. We examined these possibilities with isolated, cannulated, and perfused hamster cheek pouch arterioles (50- to 80-microm resting diameter). After intraluminal loading of 2 microM fluo 3 to measure Ca2+ or 1 microM di-8-ANEPPS to measure membrane potential, photometric techniques were used to selectively measure changes in intracellular Ca2+ concentration ([Ca2+]i) or membrane potential in endothelial cells. Activation of the endothelium by micropipette application of ACh (10-4 M, 1.0-s pulse) to a short segment of arteriole (100-200 microm) increased endothelial cell [Ca2+]i and caused hyperpolarization at the site of stimulation. This response was followed rapidly by vasodilation of the entire arteriole ( approximately 2-mm length). Change in membrane potential always preceded dilation, both at the site of stimulation and at distant sites along the arteriole. In contrast, an increase in endothelial cell [Ca2+]i was observed only at the application site. Micropipette application of KCl, which can depolarize both smooth muscle and endothelial cells (250 mM, 2.5-s pulse), also caused a rapid, spreading response consisting of depolarization followed by vasoconstriction. With KCl stimulation, in addition to changes in membrane potential, increases in endothelial cell [Ca2+]i were observed at distant sites not directly exposed to KCl. The rapid longitudinal spread of both hyperpolarizing and depolarizing responses support electrical coupling as the mode of signal transmission along the arteriolar length. In addition, the relatively short distance between heterologous cell types enables the superimposed radial Ca2+ signaling between smooth muscle and endothelial cells to modulate vasomotor responses.  相似文献   

3.
An increase in tissue blood flow requires relaxation of smooth muscle cells along entire branches of the resistance vasculature. Whereas the spread of hyperpolarization along the endothelium can coordinate smooth muscle cell relaxation, complementary signaling events have been implicated in the conduction of vasodilation. We tested the hypothesis that Ca(2+) waves propagate from cell to cell along the endothelium of feed arteries exhibiting spontaneous vasomotor tone. Feed arteries of the hamster retractor muscle were isolated, pressurized to 75 mmHg at 37 degrees C, and developed myogenic tone spontaneously. Smooth muscle cells and endothelial cells were loaded with the Ca(2+) indicator Fluo-4. An acetylcholine stimulus was delivered locally using microiontophoresis (1-microm pipette tip, 1 microA, 1 s), and Ca(2+) signaling within and along respective cell layers was determined using laser-scanning confocal microscopy. Acetylcholine triggered an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) of endothelial cells at the site of stimulation that preceded two distinct events: 1) a rapid synchronous decrease in smooth muscle [Ca(2+)](i) along the entire vessel and 2) an ensuing Ca(2+) wave that propagated bidirectionally along the endothelium at approximately 111 microm/s for distances exceeding 1 mm. Maximal dilation of vessels with either nifedipine (1 microM) or sodium nitroprusside (SNP, 100 microM) reduced the distance that Ca(2+) waves traveled to approximately 300 microm (P < 0.05). Thus Ca(2+) waves propagate along the endothelium of resistance vessels with vasomotor tone, and this signaling pathway is compromised during maximal dilation with nifedipine or SNP.  相似文献   

4.
We tested whether local and conducted responses to ACh depend on factors released from endothelial cells (EC) in cheek pouch arterioles of anesthetized hamsters. ACh was delivered from a micropipette (1 s, 500 nA), while arteriolar diameter (rest, approximately 40 microm) was monitored at the site of application (local) and at 520 and 1,040 microm upstream (conducted). Under control conditions, ACh elicited local (22-65 microm) and conducted (14-44 microm) vasodilation. Indomethacin (10 microM) had no effect, whereas N(omega)-nitro-L-arginine (100 microM) reduced local and conducted vasodilation by 5-8% (P < 0.05). Miconazole (10 microM) or 17-octadecynoic acid (17-ODYA; 10 microM) diminished local vasodilation by 15-20% and conducted responses by 50-70% (P < 0.05), suggesting a role for cytochrome P-450 (CYP) metabolites in arteriolar responses to ACh. Membrane potential (E(m)) was recorded in smooth muscle cells (SMC) and in EC identified with dye labeling. At rest (control E(m), typically -30 mV), ACh evoked local (15-32 mV) and conducted (6-31 mV) hyperpolarizations in SMC and EC. Miconazole inhibited SMC and EC hyperpolarization, whereas 17-ODYA inhibited hyperpolarization of SMC but not of EC. Findings indicate that ACh-induced release of CYP metabolites from arteriolar EC evoke SMC hyperpolarization that contributes substantively to conducted vasodilation.  相似文献   

5.
In rat cremasteric microcirculation, mechanical occlusion of one branch of an arteriolar bifurcation causes an increase in flow and vasodilation of the unoccluded daughter branch. This dilation has been attributed to the operation of a shear stress-dependent mechanism in the microcirculation. Instead of or in addition to this, we hypothesized that the dilation observed during occlusion is the result of a conducted signal originating distal to the occlusion. To test this hypothesis, we blocked the ascending spread of conducted vasomotor responses by damaging the smooth muscle and endothelial cells in a 200-microm segment of second- or third-order arterioles. We found that a conduction blockade eliminated or diminished the occlusion-associated increase in flow through the unoccluded branch and abolished or strongly attenuated the vasodilatory response in both vessels at the branch. We also noted that vasodilations induced by ACh (10(-4) M, 0.6 s) spread to, but not beyond, the area of damage. Taken together, these data provide strong evidence that conducted vasomotor responses have an important role in coordinating blood flow in response to an arteriolar occlusion.  相似文献   

6.
The in vitro responses to ACh, flow, and hypoxia were studied in arterioles isolated from the diaphragms of rats. The endothelium was removed in some vessels by low-pressure air perfusion. In endothelium-intact arterioles, pressurized to 70 mmHg in the absence of luminal flow, ACh (10(-5) M) elicited dilation (from 103 +/- 10 to 156 +/- 13 microm). The response to ACh was eliminated by endothelial ablation and by the nitric oxide synthase antagonists NG-nitro-L-arginine (L-NNA; 10(-5) M) and NG-nitro-L-arginine methyl ester (L-NAME, 10(-5) M) but not by indomethacin (10(-5) M). Increases in luminal flow (5-35 microl/min in 5 microl/min steps) at constant distending pressure (70 mmHg) elicited dilation (from 98 +/- 8 to 159 +/- 12 microm) in endothelium-intact arterioles. The response to flow was partially inhibited by L-NNA, L-NAME, and indomethacin and eliminated by endothelial ablation and by concurrent treatment with L-NAME and indomethacin. The response to hypoxia was determined by reducing the periarteriolar PO2 from 100 to 25-30 Torr by changing the composition of the gas used to bubble the superfusing solution. Hypoxia elicited dilation (from 110 +/- 9 to 165 +/- 12 microm) in endothelium-intact arterioles but not in arterioles from which the endothelium had been removed. Hypoxic vasodilation was eliminated by treatment with indomethacin and was not affected by L-NAME or L-NNA. In rat diaphragmatic arterioles, the response to ACh is dependent on endothelial nitric oxide release, whereas the response to hypoxia is mediated by endothelium-derived prostaglandins. Flow-dilation requires that both nitric oxide and cyclooxygenase pathways be intact.  相似文献   

7.
In skeletal muscle arterioles, the pathway leading to non-nitric oxide (NO), non-prostaglandin-mediated endothelium-derived hyperpolarizing factor (EDHF)-type dilations is not well characterized. To elucidate some of the steps in this process, simultaneous changes in endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and the diameter of rat gracilis muscle arterioles (approximately 60 microm) to acetylcholine (ACh) were measured by fura 2 microfluorimetry (in the absence of NO and prostaglandins). ACh elicited rapid increases in endothelial [Ca(2+)](i) (101 +/- 7%), followed by substantial dilations (73 +/- 2%, coupling time: 1.3 +/- 0.2 s) that were prevented by endothelial loading of an intracellular Ca(2+) chelator [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid]. Arteriolar dilations to ACh were also inhibited by intraluminal administration of the Ca(2+)-activated K(+) (K(Ca)) channel blockers charybdotoxin plus apamin or by palmitoleic acid, an uncoupler of myoendothelial gap junctions without affecting changes in endothelial [Ca(2+)](i). The presence of large conductance K(Ca) channels on arteriolar endothelial cells was demonstrated with immunohistochemisty. We propose that in skeletal muscle arterioles, EDHF-type mediation is evoked by an increase in endothelial [Ca(2+)](i), which by activating endothelial K(Ca) channels elicits hyperpolarization that is conducted via myoendothelial gap junctions to the smooth muscle resulting in decreases in [Ca(2+)](i) and consequently dilation.  相似文献   

8.
This study investigated the dosage effects of nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) on intermittent pneumatic compression (IPC)-induced vasodilation in uncompressed upstream muscle and the effects of IPC on endothelial NOS (eNOS) expression in upstream muscle. After L-NMMA infusion, mean arterial pressure increased by 5% from baseline (99.5 +/- 18.7 mmHg; P < 0.05). Heart rate and respiratory rate were not significantly affected. One-hour IPC application on legs induced a 10% dilation from baseline in 10- to 20-microm arterioles and a 10-20% dilation in 21- to 40 microm arterioles and 41- to 70-microm arteries in uncompressed cremaster muscle. IPC-induced vasodilation was dose dependently reduced, abolished, or even reversed by concurrently infused L-NMMA. Moreover, expression of eNOS mRNA in uncompressed cremaster muscle was upregulated to 2 and 2.5 times normal at the end of 1- and 5-h IPC on legs, respectively, and the expression of eNOS protein was upregulated to 1.8 times normal. These increases returned to baseline level after cessation of IPC. The results suggest that eNOS plays an important role in regulating the microcirculation in upstream muscle during IPC.  相似文献   

9.
The conduction of vasodilation along resistance vessels has been presumed to reflect the electrotonic spread of hyperpolarization from cell to cell along the vessel wall through gap junction channels. However, the vasomotor response to acetylcholine (ACh) encompasses greater distances than can be explained by passive decay. To investigate the underlying mechanism for this behavior, we tested the hypothesis that ACh augments the conduction of hyperpolarization. Feed arteries (n = 23; diameter, 58 +/- 4 microm; segment length, 2-8 mm) were isolated from the hamster retractor muscle, cannulated at each end, and pressurized to 75 mmHg (at 37 degrees C). Vessels were impaled with one or two dye-containing microelectrodes simultaneously (separation distance, 50 microm to 3.5 mm). Membrane potential (E(m)) (rest, approximately -30 mV) and electrical responses were similar between endothelium and smooth muscle, as predicted for robust myoendothelial coupling. Current injection (-0.8 nA, 1.5 s) evoked hyperpolarization (-10 +/- 1 mV; membrane time constant, 240 ms) that conducted along the vessel with a length constant (lambda) = 1.2 +/- 0.1 mm; spontaneous E(m) oscillations (approximately 1 Hz) decayed with lambda = 1.2 + 0.1 mm. In contrast, ACh microiontophoresis (500 nA, 500 ms, 1 microm tip) evoked hyperpolarization (-14 +/- 2 mV) that conducted with lambda = 1.9 +/- 0.1 mm, 60% further (P < 0.05) than responses evoked by purely electrical stimuli. These findings indicate that ACh augments the conduction of hyperpolarization along the vessel wall.  相似文献   

10.
Hydrogen peroxide, a relatively stable reactive oxygen species, is known to elicit vasodilation, but its underlying mechanism remains elusive. Here, we examined the role of endothelial nitric oxide (NO), prostaglandin, cytochrome P-450-derived metabolites, and smooth muscle potassium channels in coronary arteriolar dilation to abluminal H2O2. Pig subepicardial coronary arterioles (50-100 microm) were isolated and pressurized without flow for in vitro study. Arterioles developed basal tone and dilated dose dependently to H2O2 (1-100 microM). Disruption of th endothelium and inhibition of cyclooxygenase (COX) by indomethacin produced identical attenuation of vasodilation to H2O2. Conversely, the vasodilation to H2O2 was not affected by either the NO synthase inhibitor NG-nitro-l-arginine methyl ester or the cytochrome P-450 enzyme blocker miconazole. Inhibition of the COX-1, but not the COX-2 pathway, attenuated H2O2-induced dilation similarly to indomethacin. The production of prostaglandin E2 (PGE2), but not prostaglandin I2, from coronary arterioles was significantly increased by H2O2. Furthermore, inhibition of PGE2 receptors with AH-6809 attenuated vasodilation to H2O2 similar to that produced by indomethacin. In the absence of a functional endothelium, H2O2-induced dilation was attenuated, in an identical manner, by a depolarizing agent KCl and a calcium-activated potassium (KCa) channel inhibitor iberiotoxin. However, PGE2-induced dilation was not affected by iberiotoxin. The endothelium-independent dilation to H2O2 was also insensitive to the inhibition of guanylyl cyclase, lipoxygenase, ATP-sensitive potassium channels, and inward rectifier potassium channels. These results suggest that H2O2 induces endothelium-dependent vasodilation through COX-1-mediated release of PGE2 and also directly relaxes smooth muscle by hyperpolarization through KCa channel activation.  相似文献   

11.
Histamine increases the permeability of capillaries and venules but little is known of its precapillary actions on the control of tissue perfusion. Using gene ablation and pharmacological interventions, we tested whether histamine could increase muscle blood flow through stimulating nitric oxide (NO) release from microvascular endothelium. Vasomotor responses to topical histamine were investigated in second-order arterioles in the superfused cremaster muscle of anesthetized C57BL6 mice and null platelet endothelial cell adhesion molecule-1 (PECAM-1-/-) and null endothelial NO synthase (eNOS-/-) mice aged 8-12 wk. Neither resting (17 +/- 1 microm) nor maximum diameters (36 +/- 2 microm) were different between groups, nor was the constrictor response (approximately 5 +/- 1 microm) to elevating superfusate oxygen from 0 to 21%. For arterioles of C57BL6 and PECAM-1-/- mice, cumulative addition of histamine to the superfusate produced vasodilation (1 nM-1 microM; peak response, 9 +/- 1 microm) and then vasoconstriction (10-100 microM; peak response, 12 +/- 2 microm). In eNOS-/- mice, histamine produced only vasoconstriction. In C57BL6 and PECAM-1-/- mice, vasodilation was abolished with Nomega-nitro-l-arginine (30 microM); in all mice, vasoconstriction was abolished with nifedipine (1 microM). Vasomotor responses were eliminated with pyrilamine (1 microM; H1 receptor antagonist) yet remained intact with cimetidine (1 microM; H2 receptor antagonist). These findings illustrate that the biphasic vasomotor response of mouse cremaster arterioles to histamine is mediated through H1 receptors on endothelium (NO-dependent vasodilation) as well as smooth muscle (Ca2+ entry and constriction). Thus histamine can increase as well as decrease muscle blood flow, according to local concentration. However, when NO production is compromised, only vasoconstriction and flow reduction occur.  相似文献   

12.
Blood flow capacity in skeletal muscle declines with age. Reduced blood flow capacity may be related to decline in the maximal vasodilatory capacity of the resistance vasculature. This study tested the hypothesis that aging results in impaired vasodilatory capacity of first-order (1A) arterioles isolated from rat-hindlimb locomotory muscle: 1A arterioles (90-220 microm) from gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-144 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasodilatory responses to increasing concentrations of ACh (10(-9) to 10(-4) M), adenosine (ADO, 10(-10) to 10(-4) M), and sodium nitroprusside (SNP, 10(-10) to 10(-4) M) were evaluated at a constant intraluminal pressure of 60 cmH(2)O in the absence of flow. Flow-induced vasodilation was also evaluated in the absence of pressure changes. Responses to ADO and SNP were not altered by age. Endothelium-dependent vasodilation induced by flow was significantly reduced in arterioles from both gastrocnemius and soleus muscles. In contrast, endothelium-dependent vasodilation to ACh was reduced only in soleus muscle arterioles. These results indicate that aging impairs vasodilatory responses mediated through the endothelium of resistance arterioles from locomotory muscle, whereas smooth muscle vasodilatory responses remain intact with aging. Additionally, ACh-induced vasodilation was altered by age only in soleus muscle arterioles, suggesting that the mechanism of age-related endothelial impairment differs in arterioles from soleus and gastrocnemius muscles.  相似文献   

13.
Venular control of arteriolar perfusion has been the focus of several investigations in recent years. This study investigated 1) whether endogenous adenosine helps control venule-dependent arteriolar dilation and 2) whether venular leukocyte adherence limits this response via an oxidant-dependent mechanism in which nitric oxide (NO) levels are decreased. Intravital microscopy was used to assess changes in arteriolar diameters and NO levels in rat mesentery. The average resting diameter of arterioles (27.5 +/- 1.0 microm) paired with venules with minimal leukocyte adherence (2.1 +/- 0.3 per 100-microm length) was significantly larger than that of unpaired arterioles (24.5 +/- 0.8 microm) and arterioles (23.3 +/- 1.3 microm) paired with venules with higher leukocyte adherence (9.0 +/- 0.5 per 100-microm length). Local superfusion of adenosine deaminase (ADA) induced significant decreases in diameter and perivascular NO concentration in arterioles closely paired to venules with minimal leukocyte adherence. However, ADA had little effect on arterioles closely paired to venules with high leukocyte adherence or on unpaired arterioles. To determine whether the attenuated response to ADA for the high-adherence group was oxidant dependent, the responses were also observed in arterioles treated with 10(-4) M Tempol. In the high-adherence group, Tempol fully restored NO levels to those of the low-adherence group; however, the ADA-induced constriction remained attenuated, suggesting a possible role for an oxidant-independent vasoconstrictor released from the inflamed venules. These findings suggest that adenosine- and venule-dependent dilation of paired arterioles may be mediated, in part, by NO and inhibited by venular leukocyte adherence.  相似文献   

14.
Endothelial cells are considered electrically unexcitable. However, endothelium-dependent vasodilators (e.g., acetylcholine) often evoke hyperpolarization. We hypothesized that electrical stimulation of endothelial cells could evoke hyperpolarization and vasodilation. Feed artery segments (resting diameter: 63 +/- 1 microm; length 3-4 mm) of the hamster retractor muscle were isolated and pressurized to 75 mmHg, and focal stimulation was performed via microelectrodes positioned across one end of the vessel. Stimulation at 16 Hz (30-50 V, 1-ms pulses, 5 s) evoked constriction (-20 +/- 2 microm) that spread along the entire vessel via perivascular sympathetic nerves, as shown by inhibition with tetrodotoxin, omega-conotoxin, or phentolamine. In contrast, stimulation with direct current (30 V, 5 s) evoked vasodilation (16 +/- 2 microm) and hyperpolarization (11 +/- 1 mV) of endothelial and smooth muscle cells that conducted along the entire vessel. Conducted responses were insensitive to preceding treatments, atropine, or N(omega)-nitro-L-arginine, yet were abolished by endothelial cell damage (with air). Injection of negative current (相似文献   

15.
Conduction of changes in diameter plays an important role in the coordination of peripheral vascular resistance and, thereby, in the control of arterial blood pressure. It is thought that conduction of vasomotor signals relies on the electrotonic spread of changes in membrane potential from a site of stimulation through gap junctions connecting the cells of the vessel wall. To explore this idea, we stimulated a short segment of mouse cremasteric arterioles with an application, via micropipette, of ACh, an endothelium-dependent vasodilator, or pinacidil, an ATP-sensitive K+ channel opener. Vasodilations were evaluated at the stimulation site (local) and at 500, 1,000, and 2,000 microm upstream. The vasodilator response evoked by direct arteriolar hyperpolarization induced by pinacidil decayed rapidly with distance, as expected for the passive spread of an electrical signal. Deletion of the gap junction proteins connexin37 or connexin40 did not alter the conduction of pinacidil-induced vasodilation. In contrast to pinacidil, the vasodilator response activated by ACh spread along the entire vessel without decrement. Although the ACh-induced conducted vasodilation was similar in wild-type and connexin37 knockout mice, deletion of connexin40 converted the nondecremental conducted response activated by ACh into one similar to that of pinacidil, with a decline in magnitude along the vessel length. These results suggest that ACh activates a mechanism of regenerative conduction of vasodilator responses. Connexin40 is essential for the ACh-activated regenerative vasodilator mechanism. However, neither connexin40 nor connexin37 is indispensable for the electrotonic spread of hyperpolarizing signals.  相似文献   

16.
Adrenomedullin (ADM) is a vasodilator produced by vascular endothelium and smooth muscle cells. Although plasma ADM levels are increased in patients with hypertension, heart failure, and myocardial infarction, little information exists regarding the microvascular response to ADM in the human heart. In the present study we tested the hypothesis that ADM produces coronary arteriolar dilation in humans and examined the mechanism of this dilation. Human coronary arterioles were dissected and cannulated with micropipettes. Internal diameter was measured by video microscopy. In vessels constricted with ACh, the diameter response to cumulative doses of ADM (10(-12)-10(-7) M) was measured in the presence and absence of human ADM-(22-52), calcitonin gene-related peptide-(8-37), N(omega)-nitro-L-arginine methyl ester (L-NAME), indomethacin (Indo), (1)H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, SQ-22536, or KCl (60 mM). ADM dilated human coronary arterioles through specific ADM receptors (maximum dilation = 69 +/- 11%). L-NAME or N-monomethyl-L-arginine attenuated dilation to ADM (for L-NAME, maximum dilation = 66 +/- 7 vs. 41 +/- 13%, P < 0.05). Thus the mechanism of ADM-induced dilation involves generation of nitric oxide. However, neither (1)H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one, SQ-22536, nor Indo alone altered dilation to ADM. High concentrations of KCl blocked dilation to ADM. The magnitude of ADM dilation was reduced in subjects with hypertension. We propose that, in human coronary arterioles, ADM elicits vasodilation in part through production of nitric oxide and in part through activation of K(+) channels, with little contribution from adenylyl cyclase. The former dilator mechanism is independent of the more traditional pathway involving activation of soluble guanylate cyclase.  相似文献   

17.
Obesity frequently leads to the development of hypertension. We hypothesized that high-fat diet (HFD)-induced obesity impairs the endothelium-dependent dilation of arterioles. Male Wistar rats were fed with normal (control) or HFD (60% of saturated fat, for 10 wk). In rats with HFD, body weight, mean arterial blood pressure, and serum insulin, cholesterol, and glucose were elevated. In isolated gracilis muscle arterioles (diameter: approximately 160 microm) of HFD, rat dilations to ACh (at 1 microM, maximum: 83 +/- 3%) and histamine (at 10 microM, maximum: 16 +/- 4%) were significantly (P < 0.05) decreased compared with those of control responses (maximum: 90 +/- 2 and 46 +/- 4%, respectively). Dilations to the NO donor sodium nitroprusside were similar in the two groups. Inhibition of NO synthesis by N(omega)-nitro-l-arginine methyl ester reduced ACh- and histamine-induced dilations in control arterioles but had no effect on microvessels of HFD rats. The superoxide dismutase mimetic Tiron or xanthine oxidase inhibitor allopurinol enhanced ACh (maximum: 90 +/- 2 and 93 +/- 2%, respectively)- and histamine (maximum: 30 +/- 7 and 37 +/- 8%, respectively)-induced dilations in HFD arterioles, whereas the NAD(P)H oxidase inhibitor apocynin had no significant effect. Correspondingly, in carotid arteries of HFD rats, an enhanced superoxide production was shown by lucigenin-enhanced chemiluminescence, in association with an increased xanthine oxidase, but not NAD(P)H oxidase activity. In addition, a marked xanthine oxidase immunostaining was detected in the endothelial layer of the gracilis arterioles of HFD, but not in control rats. These findings suggest that, in obese rats, NO mediation of endothelium-dependent dilation of skeletal muscle arterioles is reduced because of an enhanced xanthine oxidase-derived superoxide production. These alterations demonstrate substantial dysregulation of arteriolar tone by the endothelium in HFD-induced obesity, which may contribute to disturbed tissue blood flow and development of increased peripheral resistance.  相似文献   

18.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

19.
This study was designed to test the hypothesis that venular administration of ATP resulted in endothelium-dependent dilation of adjacent arterioles through a mechanism involving cyclooxygenase products. Forty-three male golden hamsters were anesthetized with pentobarbital sodium (60 mg/kg ip), and the cremaster muscle was prepared for in vivo microscopy. ATP (100 microM) injected into venules dilated adjacent arterioles from a mean diameter of 51 +/- 4 to 76 +/- 6 microm (P < 0.05, n = 6). To remove the source of endothelial-derived relaxing factors, the venules were then perfused with air bubbles to disrupt the endothelium. Resting arteriolar diameter was not altered after disruption of the venular endothelium (51 +/- 5 microm), and the responses to venular ATP infusions were significantly attenuated (59 +/- 4 microm, P < 0.05). To determine whether the relaxing factor was a cyclooxygenase product, ATP infusion studies were repeated in the absence and presence of indomethacin (28 microM). Under control conditions, ATP (100 microM) infusion into the venule caused an increase in mean arteriolar diameter from 55 +/- 4 to 78 +/- 3 microm (P < 0.05, n = 6). In the presence of indomethacin, mean resting arteriolar tone was not significantly altered (49 +/- 4 microm), and the response to ATP was significantly attenuated (54 +/- 4 microm, P < 0.05, n = 6). These studies show that increases in venular ATP concentrations stimulate the release of cyclooxygenase products, possibly from the venular endothelium, to vasodilate the adjacent arteriole.  相似文献   

20.
Connexins are the protein constituents of gap junctions which mediate intercellular communication in most tissues. In arterioles gap junctions appear to be important for conduction of vasomotor responses along the vessel. Studies of the expression pattern of connexin isoforms in the microcirculation are sparse. We investigated the expression of the three major vascular connexins in mesenteric arterioles (diameter <50 micro m) from male Sprague-Dawley rats, since conducted vasomotor responses have been described in these vessels. The findings were compared with those obtained from upstream small resistance arteries. Indirect immunofluorescence techniques were used on whole mounts of mesenteric arterioles and on frozen sections of resistance arteries (diameter approximately 300 micro m). Mesenteric arterioles expressed Cx40 and Cx43 in the endothelial layer, and Cx37 was found in most but not all vessels. Connexins were not demonstrated in the media. In resistance arteries endothelial cells expressed Cx37, Cx40 and Cx43. Ultrastructural studies of mesenteric arterioles confirmed that gap junction plaques between endothelial cells are present, whereas myoendothelial, or smooth muscle cell gap junctions could not be demonstrated. The findings suggest that smooth muscle cells in mesenteric arterioles may not be well coupled and favour that conducted vasomotor responses in these vessels are propagated through the endothelial cell layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号