首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The total cavopulmonary connection (TCPC) has shown great promise as an effective palliation for single-ventricle congenital heart defects. However, because the procedure results in complete bypass of the right-heart, fluid dynamic power losses may play a vital role in postoperative patient success. Past research has focused on determining power losses using control volume methods. Such methods are not directly applicable clinically without highly invasive pressure measurements. This work proposes the use of the viscous dissipation function as a tool for velocity gradient based estimation of fluid dynamic power loss. To validate this technique, numerical simulations were conducted in a model of the TCPC incorporating a 13.34 mm (one caval diameter) caval offset and a steady cardiac output of 2 L x min(-1). Inlet flow through the superior vena cava was 40 percent of the cardiac output, while outflow through the right pulmonary artery (RPA) was varied between 30 and 70 percent, simulating different blood flow distributions to the lungs. Power losses were determined using control volume and dissipation function techniques applied to the numerical data. Differences between losses computed using these techniques ranged between 3.2 and 9.9 percent over the range of RPA outflows studied. These losses were also compared with experimental measurements front a previous study. Computed power losses slightly exceeded experimental results due to different inlet flow conditions. Although additional experimental study is necessary to establish the clinical applicability of the dissipation function, it is believed that this method, in conjunction with velocity gradient information derived from imaging modalities such as magnetic resonance imaging, can provide a noninvasive means of assessing power losses within the TCPC in vivo.  相似文献   

2.
Particle image velocimetry (PIV) and phase contrast magnetic resonance imaging (PC-MRI) have not been compared in complex biofluid environments. Such analysis is particularly useful to investigate flow structures in the correction of single ventricle congenital heart defects, where fluid dynamic efficiency is essential. A stereolithographic replica of an extracardiac total cavopulmonary connection (TCPC) is studied using PIV and PC-MRI in a steady flow loop. Volumetric two-component PIV is compared to volumetric three-component PC-MRI at various flow conditions. Similar flow structures are observed in both PIV and PC-MRI, where smooth flow dominates the extracardiac TCPC, and superior vena cava flow is preferential to the right pulmonary artery, while inferior vena cava flow is preferential to the left pulmonary artery. Where three-component velocity is available in PC-MRI studies, some helical flow in the extracardiac TCPC is observed. Vessel cross sections provide an effective means of validation for both experiments, and velocity magnitudes are of the same order. The results highlight similarities to validate flow in a complex patient-specific extracardiac TCPC. Additional information obtained by velocity in three components further describes the complexity of the flow in anatomic structures.  相似文献   

3.
We developed a rat model of pulmonary arteriovenous malformations after cavopulmonary anastomosis. We sought to determine whether this model reproduces the angiographic and histologic features seen in the human condition. Eight Sprague-Dawley rats underwent a right superior cavopulmonary anastomosis with the use of microsurgical techniques. Between 2 and 13 mo, pulmonary angiography was performed, the animals were euthanized, and the lungs were removed. Microscopic sections of the lung were stained with an endothelial-specific antibody (von Willebrand factor). Microvessel density was determined by counting vessels staining positively for von Willebrand factor, and the shunted and nonshunted (control) lungs were compared for each animal. Pulmonary angiography revealed time-dependent development of arteriovenous malformations. Microvessel density demonstrated a time-dependent increase in the shunted lung compared with the control lung (simple linear regression of the ratio of the microvessel density of the shunted lung divided by the microvessel density of the control lung on time; R(2) = 0.79, P = 0.003). This animal model reproduces the same angiographic and microscopic features of pulmonary arteriovenous malformations that develop in humans after cavopulmonary anastomosis. This appears to be a valid model that may be used to further study etiologic mechanisms for this phenomenon.  相似文献   

4.
The flow field and energetic efficiency of total cavopulmonary connection (TCPC) models have been studied by both in vitro experiment and computational fluid dynamics (CFD). All the previous CFD studies have employed the structured mesh generation method to create the TCPC simulation model. In this study, a realistic TCPC model with complete anatomical features was numerically simulated using both structured and unstructured mesh generation methods. The flow fields and energy losses were compared in these two meshes. Two different energy loss calculation methods, the control volume and viscous dissipation methods, were investigated. The energy losses were also compared to the in vitro experimental results. The results demonstrated that: (1) the flow fields in the structured model were qualitatively similar to the unstructured model; (2) more vortices were present in the structured model than in the unstructured model; (3) both models had the least energy loss when flow was equally distributed to the left and right pulmonary arteries, while high losses occurred for extreme pulmonary arterial flow splits; (4) the energy loss results calculated using the same method were significantly different for different meshes; and (5) the energy loss results calculated using different methods were significantly different for the same mesh.  相似文献   

5.
The modified Blalock-Taussig shunt is a surgical procedure used as a palliation to treat complex congenital heart defects. It consists of an interposing prosthetic tube between the innominate/subclavian artery and the right pulmonary artery. Previous experience indicates that the pressure drop across the shunt is affected by the pulmonary pressure at the distal anastomosis combined with the distensibility of the anastomosis. In this study, a computational fluid-structure interaction approach is presented to investigate the haemodynamic behaviour. Steady-state fluid dynamics and structural analyses were carried out using commercial codes based on the finite element method (FIDAP and ABAQUS) coupled by means of a purposely-developed procedure to transfer boundary conditions. Both prosthetic tube and artery walls were characterised by non-linear material properties. Three different pulmonary pressures (2, 5 and 15 mmHg) and two volume flow rates (0.4 and 0.8 l/min) were investigated. Results indicate that the effects of distensibility at the distal anastomosis on the shunt pressure drop are relevant only when the distal anastomosis on the shunt pressure drop are relevant only when the distal anastomosis is not fully distended, which occurs when the pulmonary pressure is lower than 5 mmHg.  相似文献   

6.
The total cavo pulmonary connection, or TCPC, is a surgical correction to congenital heart defects. The geometry of this connection has been shown to determine the fluid power loss as well as the distribution of hepatic fluid that enters through the inferior vena cava. In vitro studies were performed to measure the power loss and hepatic fluid distribution in models of the TCPC with four different geometries. It was found that a zero offset straight geometry provided good hepatic fluid distribution but large power loss. A zero offset flared geometry provided low power loss but poor hepatic fluid distribution. The optimal geometry from those tested was found to be the zero offset cowl geometry whereby an enlargement was made on one side of the inferior and superior vena cava. So long as the cowl was directed toward the pulmonary artery of lowest flow rate, low power loss and relatively good distribution of hepatic flow could be obtained.  相似文献   

7.
The total cavopulmonary connection (TCPC) is a palliative cardiothoracic surgical procedure used in patients with one functioning ventricle that excludes the heart from the systemic venous to pulmonary artery pathway. Blood in the superior and inferior vena cavae (SVC, IVC) is diverted directly to the pulmonary arteries. Since only one ventricle is left in the circulation, minimizing pressure drop by optimizing connection geometry becomes crucial. Although there have been numerical and in-vitro studies documenting the effect of connection geometry on overall pressure drop, there is little published data examining the effect of SVC-IVC flow rate ratio on detailed fluid mechanical structures within the various connection geometries. We present here results from a numerical study of the TCPC connection, configured with various connections and SVC:IVC flow ratios. The role of major flow parameters: shear stress, secondary flow, recirculation regions, flow stagnation regions, and flow separation, was examined. Results show a complex interplay among connection geometry, flow rate ratio and the types and effects of the various flow parameters described above. Significant changes in flow structures affected local distribution of pressure, which in turn changed overall pressure drop. Likewise, changes in local flow structure also produced changes in maximum shear stress values; this may have consequences for platelet activation and thrombus formation in the clinical situation. This study sheds light on the local flow structures created by the various connections andflow configurations and as such, provides an additional step toward understanding the detailed fluid mechanical behavior of the more complex physiological configurations seen clinically.  相似文献   

8.
The objective of this study is to compare the coronary and pulmonary blood flow dynamics resulting from two configurations of systemic-to-pulmonary artery shunts currently utilized during the Norwood procedure: the central (CS) and modified Blalock Taussig (MBTS) shunts. A lumped parameter model of the neonatal cardiovascular circulation and detailed 3-D models of the shunt based on the finite volume method were constructed. Shunt sizes of 3, 3.5 and 4 mm were considered. A multiscale approach was adopted to prescribe appropriate and realistic boundary conditions for the 3-D models of the Norwood circulation. Results showed that the average shunt flow rate is higher for the CS option than for the MBTS and that pulmonary flow increases with shunt size for both options. Cardiac output is higher for the CS option for all shunt sizes. Flow distribution between the left and the right pulmonary arteries is not completely balanced, although for the CS option the discrepancy is low (50-51% of the pulmonary flow to the right lung) while for the MBTS it is more pronounced with larger shunt sizes (51-54% to the left lung). The CS option favors perfusion to the right lung while the MBTS favors the left. In the CS option, a smaller percentage of aortic flow is distributed to the coronary circulation, while that percentage rises for the MBTS. These findings may have important implications for coronary blood flow and ventricular function.  相似文献   

9.
Protease-activated receptors (PARs) and tachykinin-immunoreactive fibers are located in the lung as sentries to respond to a variety of pathological stimuli. The effects of PAR activation on the lung have not been adequately studied. We report on the effects of instilling PAR-activating peptides (PAR-APs, including PAR1-, PAR2-, and PAR4-AP) into the lungs of ventilated or spontaneously breathing mice. PAR2-AP, but not PAR1-AP or PAR4-AP, caused a sharp increase in lung endothelial and epithelial permeability to protein, extravascular lung water, and airway tone. No responses to PAR2-AP were detected in PAR2 knockout mice. In bronchoalveolar lavage, PAR2 activation caused 8- and 5-fold increase in MIP-2 and substance P levels, respectively, and a 12-fold increase in the number of neutrophils. Ablation of sensory neurons (by capsaicin) markedly decreased the PAR2-mediated airway constriction, and virtually abolished PAR2-mediated pulmonary inflammation and edema, as did blockade of NK1 or NK2 receptors. Thus, PAR2 activation in the lung induces airway constriction, lung inflammation, and protein-rich pulmonary edema. These effects were either partly or completely neuropeptide dependent, suggesting that PAR2 can cause lung inflammation by a neurogenic mechanism.  相似文献   

10.
Diagnostic testing in patients with congenital heart disease is usually performed supine and at rest, conditions not representative of their typical hemodynamics. Upright exercise measurements of blood flow may prove valuable in the assessment of these patients, but data in normal subjects are first required. With the use of a 0.5-T open magnet, a magnetic resonance-compatible exercise cycle, and cine phase-contrast techniques, time-dependent blood flow velocities were measured in the right (RPA), left (LPA), and main (MPA) pulmonary arteries and superior (SVC) and inferior (IVC) vena cavae of 10 healthy 10- to 14-yr-old subjects. Measurements were made at seated rest and during upright cycling exercise (150% resting heart rate). Mean blood flow (l/min) and reverse flow index were computed from the velocity data. With exercise, RPA and LPA mean flow increased 2.0 +/- 0.5 to 3.7 +/- 0.7 (P < 0.05) and 1.6 +/- 0.4 to 2.9 +/- 0.8 (P < 0.05), respectively. Pulmonary reverse flow index (rest vs. exercise) decreased with exercise as follows: MPA: 0.014 +/- 0.012 vs. 0.006 +/- 0.006 [P = not significant (NS)], RPA: 0.005 +/- 0.004 vs. 0.000 +/- 0.000 (P < 0.05), and LPA: 0.041 +/- 0.019 vs. 0.014 +/- 0.016 (P < 0.05). SVC and IVC flow increased from 1.5 +/- 0.2 to 1.9 +/- 0.6 (P = NS) and 1.6 +/- 0.4 to 4.9 +/- 1.3 (P < 0.05), respectively. A 56/44% RPA/LPA flow distribution at both rest and during exercise suggests blood flow distribution is dominated by distal pulmonary resistance. Reverse flow in the MPA appears to originate solely from the LPA while the RPA is in relative isolation. During seated rest, the SVC-to-IVC venous return ratio is 50/50%. With light/moderate cycling exercise, IVC flow increases by threefold, whereas SVC remains essentially constant.  相似文献   

11.
The mechanism of ventilatory stimulation that accompanies increases in cardiac output is unknown. Previous studies addressing this issue have been inconclusive. However, only steady pulmonary blood flow was used. The effect of flow pulsatility merits consideration, because increasing cardiac output raises not only mean pulmonary arterial pressure but also pulse pressure; mechanoreceptors with an important dynamic component to their responses may cause a response to pulsatile, but not steady, flow. Studies were done on anesthetized cats (n = 4) and dogs (n = 4). The right pulmonary artery was cannulated within the pericardium, and systemic blood was pumped from the left atrium to the right pulmonary artery. The right pulmonary circulation was perfused at different levels of flow, which was either steady or pulsatile. Steady-state flow of up to 150 ml.kg-1.min-1 (270 ml.kg-1.min-1 when corrected for the proportion of lung tissue perfused) did not affect breathing pattern. When high pulmonary flow was made pulsatile (pulse pressure approximately 23 mmHg), breath duration decreased from 3.7 +/- 0.72 to 3.4 +/- 0.81 (SD) s (P less than 0.01), representing a change in frequency of only 9%. There was no change in peak inspiratory activity. It was concluded that pulmonary vascular mechanoreceptors are not likely to contribute significantly to the increase in ventilation in association with increases in cardiac output.  相似文献   

12.
The issue of the correct determination of the mechanical power dissipated by the blood flow in the circulatory system is very important. This parameter is particularly critical when the patient's circulation has to overcome structural impairments, such as, e.g., in the case of only one functional ventricle. The surgical palliation of such a condition, which is a relatively common form of congenital heart disease, calls for an optimization of the new connection's hydrodynamics. Starting from the general formulation of the energy dissipation rate in a given control volume, this paper discusses the critical assumptions of the formula usually employed to assess the power dissipation in complex connections, such as the total cavopulmonary connection (TCPC). A new formula is derived, in which the mean elevation of the outlet and inlet sections is shown to be relevant, through the use of the piezometric pressure. Moreover, the flow profile at the boundary of the control volume is also important, since the usual approach implicitly assumes that the flow is perfectly flat: this assumption is doubtful, especially in the venous return (as in the TCPC). In the experimental part of the study, the power dissipation was measured in a physical model of the TCPC, and a large difference was found between the usual method and the proposed one, especially at low regime (85% relative difference, at 1.5 l/min total cardiac output). The proposed approach should be adopted in order to improve the accuracy of the hydrodynamical performance's assessment of surgical connections (e.g., TCPC) or implantable devices (e.g., valved conduit).  相似文献   

13.
We studied the effects of regional hypoxic pulmonary vasoconstriction (HPV) on lobar flow diversion in the presence of hydrostatic pulmonary edema. Ten anesthetized dogs with the left lower lobe (LLL) suspended in a net for continuous weighing were ventilated with a bronchial divider so the LLL could be ventilated with either 100% O2 or a hypoxic gas mixture (90% N2-5% CO2-5% O2). A balloon was inflated in the left atrium until hydrostatic pulmonary edema occurred, as evidenced by a continuous increase in LLL weight. Left lower lobe flow (QLLL) was measured by electromagnetic flow meter and cardiac output (QT) by thermal dilution. At a left atrial pressure of 30 +/- 5 mmHg, ventilation of the LLL with the hypoxic gas mixture caused QLLL/QT to decrease from 17 +/- 4 to 11 +/- 3% (P less than 0.05), pulmonary arterial pressure to increase from 35 +/- 5 to 37 +/- 6 mmHg (P less than 0.05), and no significant change in rate of LLL weight gain. Gravimetric confirmation of our results was provided by experiments in four animals where the LLL was ventilated with an hypoxic gas mixture for 2 h while the right lung was ventilated with 100% O2. In these animals there was no difference in bloodless lung water between the LLL and right lower lobe. We conclude that in the presence of left atrial pressures high enough to cause hydrostatic pulmonary edema, HPV causes significant flow diversion from an hypoxic lobe but the decrease in flow does not affect edema formation.  相似文献   

14.
Distribution of bronchial blood flow was measured in unanesthetized sheep by the use of two modifications of the microsphere reference sample technique that correct for peripheral shunting of microspheres: 1) A double microsphere method in which simultaneous left and right atrial injections of 15-microns microspheres tagged with different isotopes allowed measurement of both pulmonary blood flow and shunt-corrected bronchial blood flow, and 2) a pulmonary arterial occlusion method in which left atrial injection and transient occlusion of the left pulmonary artery prevented delivery to the lung of microspheres shunted through the peripheral circulation and allowed systemic blood flow to the left lung to be measured. Both methods can be performed in unanesthetized sheep. The pulmonary arterial occlusion method is less costly and requires fewer calculations. The double microsphere method requires less surgical preparation and allows measurement without perturbation of pulmonary hemodynamics. There was no statistically significant difference between bronchial blood flow measured with the two methods. However, total bronchial blood flow measured during pulmonary arterial occlusion (1.52 +/- 0.98% of cardiac output, n = 9) was slightly higher than that measured with the double microsphere method (1.39 +/- 0.88% of cardiac output, n = 9). In another series of experiments in which sequential measurements of bronchial blood flow were made, there was a significant increase of 15% in left lung bronchial blood flow during the first minute of occlusion of the left pulmonary artery. Thus pulmonary arterial occlusion should be performed 5 s after microsphere injection as originally described by Baile et al. (1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A pulsatile flow in vitro model of the distal end-to-side anastomosis of an arterial bypass graft was used to examine the effects that different flow ratios between the proximal outlet segment (POS) and the distal outlet segment (DOS) have on the flow patterns and the distributions of hemodynamic factors in the anastomosis. Amberlite particles were tracked by flow visualization to determine overall flow patterns and velocity measurements were made with Laser Doppler anemometry (LDA) to obtain detailed hemodynamic factors along the artery floor and the graft hood regions. These factors included wall shear stress (WSS), spatial wall shear stress gradient (WSSG), and oscillatory index (OSI). Statistical analysis was used to compare these hemodynamic factors between cases having different POS:DOS flow ratios (Case 1-0:100, Case 2-25:75, Case 3-50:50). The results showed that changes in POS:DOS flow ratios had a great influence on the flow patterns in the anastomosis. With an increase in proximal outlet flow, the range of location of the stagnation point along the artery floor decreased, while the extent of flow separation along the graft hood increased. The statistical results showed that there were significant differences (p<0.05) for the mean WSS between cases along the graft hood, but no significant differences were detected along the artery floor. There were no significant differences for the spatial WSSG along both the artery floor and the graft hood. However, there were significant differences (p<0.05) in the mean OSI between Cases 1 and 2 and between Cases 1 and 3 both along the artery floor and along the graft hood. Comparing these mechanical factors with histological findings of intimal hyperplasia formation obtained by previous canine studies, the results of the statistical analysis suggest that regions exposed to a combination of low mean WSS and high OSI may be most prone to the formation of intimal hyperplasia.  相似文献   

16.
In the mammalian fetus the ductus arteriosus allows right ventricular output to be shunted away from the lungs to the systemic circulation. This study was performed to determine how closing the ductus arteriosus of the fetal sheep would affect the pulmonary circulation. Under halothane anaesthesia 6 near-term fetal sheep were delivered with the umbilical circulation intact. Catheters were placed in the right atrium, the pulmonary artery, and the aorta. Pulmonary blood flow was measured by injecting radioactive microspheres into the right atrium while a reference sample was withdrawn from the pulmonary artery. Closing the ductus arteriosus increased pulmonary arterial pressure by 22% from 51 +/- 3 to 62 +/- 3 mmHg and increased pulmonary blood flow disproportionately by 198% from 232 +/- 74 to 692 +/- 80 ml/min per 100g. Thus, pulmonary vascular resistance decreased by 75% from 0.451 +/- 0.65 to 0.095 +/- 0.010 mmHg 100g min/ml. These findings extend the observation that pressure and flow in the pulmonary circulation of the air-breathing lung do not have a linear relationship passing through the origin to include a striking example in the fluid-filled lung of the intact fetus. They also raise questions about the nature of the elevated vascular resistance in the fetal lung.  相似文献   

17.
Our aim was to determine whether cytokine mRNA expression is induced by experimental manipulation including artificial perfusate or ischemia-reperfusion (I/R) in an isolated, perfused rat lung model. Constant pulmonary flow [Krebs-Henseleit solution supplemented with low-endotoxin (LE) or standard (ST) bovine serum albumin 4%, 0.04 ml/g body wt] and ventilation were maintained throughout. Right and left pulmonary arteries were isolated, and the left pulmonary artery was occluded for 60 min and then reperfused for 30 min. Analysis of tumor necrosis factor-alpha, IL-1 beta, IL-6, IL-10, and IFN-gamma mRNA expression by RT-PCR and evaluation of vascular permeability by bronchoalveolar lavage (BAL) fluid albumin content were conducted separately in right and left lung. Both LE and ST groups (each 12 rats) showed increases in vascular permeability by I/R (BAL fluid albumin content: 5.53 +/- 1.55 vs. 15.63 +/- 8.87 and 4.76 +/- 2.71 vs. 16.72 +/- 4.85 mg.ml BAL fluid-1.g lung dry wt-1, mean +/- SD; right vs. left lung in LE and ST groups, P < 0.05 between right and left). Cytokine mRNA expression was significantly higher in the I/R lung than in the control lung in the LE group, whereas it was higher in the control lung in the ST group (P < 0.05). mRNAs of not only proinflammatory but also anti-inflammatory cytokines were expressed in I/R lung, which are expected to aggravate I/R injury. The reversed pattern of cytokine mRNA expression in the ST group was possibly due to the longer perfusion of control lung with perfusate containing endotoxin, which caused no lung damage without I/R.  相似文献   

18.
Functional analysis of Fontan energy dissipation   总被引:2,自引:0,他引:2  
We formalize the hydrodynamic energy dissipation in the total cavopulmonary connection (TCPC) using dimensional analysis and examine the effect of governing flow variables; namely, cardiac output, flow split, body surface area, Reynolds number, and certain geometric characteristics. A simplistic and clinically useful mathematical model of the dependence of energy dissipation on the governing variables is developed. In vitro energy loss data corresponding to six patients' anatomies validated the predicted dependency of each variable and was used to develop a predictive, semi-empirical energy dissipation model of the TCPC. It is shown that energy dissipation is a cubic function of pulmonary flow split in the physiological range. Furthermore, non-dimensional energy dissipation, which is a measure of resistance of the connection, is dependent on Reynolds number and geometrical factors alone. Non-dimensional energy dissipation decreases with Reynolds number as Re(-0.25) (R(2)>0.95). In addition, for high Reynolds numbers, within physiological exercise limits, dissipation strongly correlates to minimum PA area as a power law decay with an exponent of -5/4 (R(2)>0.88). This study presents a simple analytical form of energy dissipation rate in complex patient-specific TCPCs that accurately captures the effect of cardiac output, flow split, body surface area, Reynolds number, and pulmonary artery size within physiological limits. Further studies with larger sample sizes are necessary for incorporating finer geometrical parameters such as vessel curvatures and offsets.  相似文献   

19.
Prone posture increases cardiac output and improves pulmonary gas exchange. We hypothesized that, in the supine posture, greater compression of dependent lung limits regional blood flow. To test this, MRI-based measures of regional lung density, MRI arterial spin labeling quantification of pulmonary perfusion, and density-normalized perfusion were made in six healthy subjects. Measurements were made in both the prone and supine posture at functional residual capacity. Data were acquired in three nonoverlapping 15-mm sagittal slices covering most of the right lung: central, middle, and lateral, which were further divided into vertical zones: anterior, intermediate, and posterior. The density of the entire lung was not different between prone and supine, but the increase in lung density in the anterior lung with prone posture was less than the decrease in the posterior lung (change: +0.07 g/cm(3) anterior, -0.11 posterior; P < 0.0001), indicating greater compression of dependent lung in supine posture, principally in the central lung slice (P < 0.0001). Overall, density-normalized perfusion was significantly greater in prone posture (7.9 +/- 3.6 ml.min(-1).g(-1) prone, 5.1 +/- 1.8 supine, a 55% increase; P < 0.05) and showed the largest increase in the posterior lung as it became nondependent (change: +71% posterior, +58% intermediate, +31% anterior; P = 0.08), most marked in the central lung slice (P < 0.05). These data indicate that central posterior portions of the lung are more compressed in the supine posture, likely by the heart and adjacent structures, than are central anterior portions in the prone and that this limits regional perfusion in the supine posture.  相似文献   

20.
Hypoxia causes abnormal neonatal pulmonary artery remodeling (PAR) and inhibition of alveolar development (IAD). Transforming growth factor (TGF)-beta is an important regulator of lung development and repair from injury. We tested the hypothesis that inhibition of TGF-beta signaling attenuates hypoxia-induced PAR and IAD. Mice with an inducible dominant-negative mutation of the TGF-beta type II receptor (DNTGFbetaRII) and nontransgenic wild-type (WT) mice were exposed to hypoxia (12% O(2)) or air from birth to 14 days of age. Expression of DNTGFbetaRII was induced by 20 microg/g ZnSO(4) given intraperitoneally daily from birth. PAR, IAD, cell proliferation, and expression of extracellular matrix (ECM) proteins were assessed. In WT mice, hypoxia led to thicker, more muscularized resistance pulmonary arteries and impaired alveolarization, accompanied by increases in active TGF-beta and phosphorylated Smad2. Hypoxia-induced PAR and IAD were greatly attenuated in DNTGFbetaRII mice given ZnSO(4) compared with WT control mice and DNTGFbetaRII mice not given ZnSO(4). The stimulatory effects of hypoxic exposure on pulmonary arterial cell proliferation and lung ECM proteins were abrogated in DNTGFbetaRII mice given ZnSO(4). These data support the conclusion that TGF-beta plays an important role in hypoxia-induced pulmonary vascular adaptation and IAD in the newborn animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号