首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of synthesis of the valine-alanine-alpha-aminobutyrate transaminase (transaminase C) was studied in Escherichia coli mutants lacking the branched-chain amino acid transaminase (transaminase B). An investigation was made of two strains, CU2 and CU2002, each carrying the same transaminase B lesion but exhibiting different growth responses on a medium supplemented with branched-chain amino acids. Both had the absolute isoleucine requirement characteristic of ilvE auxotrophs, but growth of strain CU2 was stimulated by valine, whereas that of strain CU2002 was markedly inhibited by valine. Strain CU2002 behaved like a conditional leucine auxotroph in that the inhibition by valine was reversed by leucine. Results of enzymatic studies showed that synthesis of transaminase C was repressed by valine in strain CU2002 but not in strain CU2. Inhibition by valine in strain CU2002 appears to be the combined effect of repression on transaminase C synthesis and valine-dependent feedback inhibition of alpha-acetohydroxy acid synthase activity, causing alpha-ketoisovalerate (and hence leucine) limitation. The ilvE markers of strains CU2 and CU2002 were each transferred by transduction to a wild-type genetical background. All ilvE recombinants from both crosses resembled strain CU2002 and were inhibited by valine in the presence of isoleucine. Thus, strain CU2 carries an additional lesion that allows it to grow on a medium containing isoleucine plus valine. It is concluded that conditional leucine auxotrophy is characteristic of mutants carrying an ilvE lesion alone.  相似文献   

2.
Escherichia coli can synthesize alpha-ketoisovalerate, the precursor of valine, leucine, and pantothenate, by three routes: anabolically via dihydroxyacid dehydrase and catabolically via both the branched-chain amino acid transaminase (transaminase B) and the alanine-valine transaminase (transaminase C). An E. coli K-12 mutant devoid of transaminase C (avtA) was isolated by mutagenizing an isoleucine-requiring strain devoid of transaminase B (ilvE::Tn5) with Mu d1(Ap lac) and selecting for valine-requiring derivatives which were ampicillin resistant, Lac+, able to crossfeed an ilvD mutant, and unable to grow on alpha-ketoisovalerate in place of valine. Strains defective in one, two, or all three alpha-ketoisovalerate metabolic enzymes were constructed, and their properties were analyzed. The data indicated that avtA is the structural gene for transaminase C, that transaminase C is a single enzyme species, and that the sole pathway for pantothenate biosynthesis is from alpha-ketoisovalerate. The data further showed that isoelectric inhibits the transaminase B-catalyzed deamination of valine in vivo.  相似文献   

3.
Structure of Somatostatin Isolated from Bovine Retina   总被引:1,自引:1,他引:0  
Abstract: Somatostatin-like immunoreactivity (SLI) from bovine retina was purified and its structure determined. Retinal tissue (1868 g) extracted with 3% acetic acid yielded 18.6 nmol SLI. This peptide was purified by chromatography on an affinity column made with anti-somatostatin antiserum, a reverse-phase C-18 HPLC column, and three sequential applications on a reverse-phase phenyl HPLC column. The peptide was purified 103,000-fold from the initial extract with an overall yield of 14.4%. Amino acid sequence determination by an automatic Edman degradation technique revealed the sequence to be as follows: Ser - Ala - Asn - Ser - Asn - Pro - Ala - Met - Ala - Pro - Arg - Glu - Arg - Lys - Ala - Gly - (Cys) - Lys - Asn - Phe - Phe - Trp - Lys - Thr - (Phe, Thr, Ser, Cys). The apparent identity of this peptide with somatostatin octacosapeptide (S28) purified from other mammalian tissue indicates the phylogenetic conservation of its structure and facilitates the use of the retina as a model system for studying the neurotransmitter function of somatostatin.  相似文献   

4.
The structure of the N-terminal domain of enzyme I complexed with histidine-containing protein (HPr) has been described by multi-dimensional NMR. Residues in HPr involved in binding were identified by intermolecular nuclear Overhauser effects (Garrett et al. 1999). Most of these residues have been mutated, and the effect of these changes on binding has been assessed by enzyme I kinetic measurement. Changes to Thr16, Arg17, Lys24, Lys27, Ser46, Leu47, Lys49, Gln51, and Thr56 result in increases to the HPr Km of enzyme I, which would be compatible with changes in binding. Except for mutations to His15 and Arg17, very little or no change in Vmax was found. Alanine replacements for Gln21, Thr52, and Leu55 have no effect. The mutation Lys40Ala also affects HPr Km of enzyme I; residue 40 is contiguous with the enzyme I binding site in HPr and was not identified by NMR. The mutations leading to a reduction in the size of the side chain (Thr16Ala, Arg17Gly, Lys24Ala, Lys27Ala, and Lys49Gly) caused relatively large increases in Km (>5-fold) indicating these residues have more significant roles in binding to enzyme I. Acidic replacement at Ser46 caused very large increases (>100-fold), while Gln51Glu gave a 3-fold increase in Km. While these results essentially concur with the identification of residues by the NMR experiments, the apparent importance of individual residues as determined by mutation and kinetic measurement does not necessarily correspond with the number of contacts derived from observed intermolecular nuclear Overhauser effects.  相似文献   

5.
Aspartate transaminase from chicken heart cytosol was immobilized covalently on activated thiol-Sepharose and digested with trypsin. After washing, the thiol-containing peptides were eluted with 2-mercaptoethanol and further purified by gel-filtration and paper chromatography. Three pure cysteinyl peptides were isolated. One of them may be represented as Ile-(Asp, Met, Cys, Gly, Leu, Thr2)-Lys; this peptide is identical to the fragment comprizing residues 387--395 in the peptide chain of aspartate transaminase from pig heart cytosol. It thus contains a cysteine residue homologous to Cys-390 of the pig heart enzyme. The second cysteinyl peptide had the following composition and partial sequence: Tyr-Phe-Val-Ser-Glu-Gly-Phe-Glu-Leu-Phe (Cys, Ala, Glu, Ser2, Phe)Lys, which corresponds to the sequence 242--258 of the pig enzyme and thus contains a cysteine residue homologous to Cys-252. The third cysteinyl peptide was similar to the tryptic peptide of the pig enzyme containing Cys-191.  相似文献   

6.
In a strain of Escherichia coli K-12 lacking threonine deaminase, the enzyme converting alpha-ketoisovalerate and alpha-keto-beta-methylvalerate to valine and isoleucine, respectively, was multivalently repressed by valine, isoleucine, and leucine. This activity was due to transaminase B, specified by the ilvE structural gene.  相似文献   

7.
ilvE gene of Escherichia coli was inserted into the region downstream of the tac promotor. As a result, the branched-chain amino acid aminotransferase was overproduced by about a hundred-fold in E. coli W3110. The overproduced aminotransferase was purified from cell extracts about 40-fold to homogeneity. Chemical and physicochemical analyses confirmed that it was a product of the ilvE gene. The enzyme existed in a hexamer with a subunit molecular weight of 34,000; the double trimer model of the enzyme presumed by the previous chemical cross-linking experiments (Lee-Peng, F.-C. et al. (1979) J. bacteriol. 139, 339-345) was supported by electron micrographs. The circular dichroic (CD) spectrum of branch-chain amino acid aminotransferase had double negative maxima at 210 and 220 nm. The alpha-helical content was estimated to be about 40% from the CD spectrum in the region of 200 to 250 nm. The absorption spectrum of the enzyme showed two peaks at 330 and 410 nm. There was no pH-dependent spectral shift. The CD spectrum of the coenzyme, pyridoxal 5'-phosphate, had negative peaks at 330 and 410 nm. These spectral properties of branched-chain amino acid aminotransferase were quite different from those of E. coli aspartate aminotransferase. Each subunit bound approximately 1 mol of pyridoxal 5'-phosphate. A lysyl residue, which forms a Schiff base with the aldehyde group of the pyridoxal 5'-phosphate, was identified in the primary structure of the enzyme.  相似文献   

8.
Phenylalanine dehydrogenase produced by Bacillus badius IAM 11059 was purified from the crude extract of B. badius to homogeneity, as judged by disc gel electrophoresis. The enzyme has an isoelectric point of 3.5 and a relative molecular mass, Mr, of 310,000-360,000. The enzyme is composed of identical subunits with an Mr 41,000-42,000. The substrate specificity of the enzyme in the oxidative deamination reaction was high for L-phenylalanine, but rather low in the reductive amination reaction, with phenylpyruvate, p-hydroxyphenylpyruvate, and 2-oxohexanoate. The gene for the enzyme was cloned into Escherichia coli with plasmid pBR322 as a vector. The enzyme was expressed in high level in E. coli. The enzyme produced by E. coli transformant was purified to homogeneity and shown to be identical to that of B. badius IAM 11,059 with respect to the specific activity, Mr, subunit structure and amino acid composition.  相似文献   

9.
2-Ketoisovalerate is used as a therapeutic agent, and a 2-ketoisovalerate-producing organism may serve as a platform for products deriving from this 2-keto acid. We engineered the wild type of Corynebacterium glutamicum for the growth-decoupled production of 2-ketoisovalerate from glucose by deletion of the aceE gene encoding the E1p subunit of the pyruvate dehydrogenase complex, deletion of the transaminase B gene ilvE, and additional overexpression of the ilvBNCD genes, encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase (AHAS), acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. 2-Ketoisovalerate production was further improved by deletion of the pyruvate:quinone oxidoreductase gene pqo. In fed-batch fermentations at high cell densities, the newly constructed strains produced up to 188 ± 28 mM (21.8 ± 3.2 g liter(-1)) 2-ketoisovalerate and showed a product yield of about 0.47 ± 0.05 mol per mol (0.3 ± 0.03 g per g) of glucose and a volumetric productivity of about 4.6 ± 0.6 mM (0.53 ± 0.07 g liter(-1)) 2-ketoisovalerate per h in the overall production phase. In studying the influence of the three branched-chain 2-keto acids 2-ketoisovalerate, 2-ketoisocaproate, and 2-keto-3-methylvalerate on the AHAS activity, we observed a competitive inhibition of the AHAS enzyme by 2-ketoisovalerate.  相似文献   

10.
Arthrobacter simplex AKU 626 was found to synthesize 4-hydroxyisoleucine from acetaldehyde, alpha-ketobutyrate, and L-glutamate in the presence of Escherichia coli harboring the branched chain amino acid transaminase gene (ilvE) from E. coli K12 substrain MG1655. By using resting cells of A. simplex AKU 626 and E. coli BL21(DE3)/pET-15b-ilvE, 3.2 mM 4-hydroxyisoleucine was produced from 250 mM acetaldehyde, 75 mM alpha-ketobutyrate, and 100 mM L-glutamate with a molar yield to alpha-ketobutyrate of 4.3% in 50 mM Tris-HCl buffer (pH 7.5) containing 2 mM MnCl(2) x 4H(2)O at 28 degrees C for 2 h. An aldolase that catalyzes the aldol condensation of acetaldehyde and alpha-ketobutyrate was purified from A. simplex AKU 626. Mn(2+) and pyridoxal 5'-monophosphate were effective in stabilizing the enzyme. The native and subunit molecular masses of the purified aldolase were about 180 and 32 kDa respectively. The N-terminal amino acid sequence of the purified enzyme showed no significant homology to known aldolases.  相似文献   

11.
The ilvE gene of the Escherichia coli K-12 ilvGEDA operon, which encodes branched-chain amino acid aminotransferase [EC 2.6.1.42], was cloned. The nucleotide sequence of 1.5 kilobase pairs containing the gene was determined. The coding region of the ilvE gene contained 927 nucleotide residues and could encode 309 amino acid residues. The predicted molecular weight, amino acid composition and the sequence of the N-terminal 15 residues agreed with the enzyme data reported previously (Lee-Peng, F.-C., et al. (1979) J. Bacteriol. 139, 339-345). From the deduced amino acid sequence, the secondary structure was predicted.  相似文献   

12.
The purified enzyme xanthosine-5'-monophosphate (XMP) aminase from Escherichia coli strain B-96 is shown to possess catalytic activity with either glutamine or ammonia as a substrate. This enzyme, which possesses identical subunits, has the following properties: (a) a pH optimum of 8.3 for both aminase and amidotransferase; (b) an apparent K-m for both glutamine and NH3 of 1 mM; (c) an amidotransferase that is approximately 2 times more active than the aminase; (d) a linear relationship between velocity and enzyme concentrationfor both activities; (e) inhibition of both activities by the glutamine analogue 6-diazo-5-oxo-L-norleucine, but the amidotransferase is more sensitive than the aminase; and (f) inhbiition of both activities by the adenosine analogue, psicofuranine, but again the amidotransferase activity is more sensitive than the aminase. The so-called XMP aminase from the E. coli mutant B-24-1 also has been examined in both crude extracts nad ammonium sulfate fractions and the following data have been obtained: (a) both preparations of enzyme contain aminase and amidotransferase activity; (b) both activities have the same substrate requirements; (c) the pH optima for both activities in the crude extract are identical with those found with the purified enzyme preparation; and (d) the amidotransferase activity in the crude extract and the ammonium sulfate fractions is 2- to 3-fold more active than the aminase. These data demonstrate that this enzyme from E. coli is not strictly a XMP aminase but is, in fact, an amidotransferase capable of utilizing either glutamine or NH3 as a substrate.  相似文献   

13.
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.  相似文献   

14.
Thr(373), Lys(374), Asp(375), and Lys(260) were chosen as site-directed mutagenesis targets within porcine NADP-dependent isocitrate dehydrogenase based on structurally corrected sequence alignment among prokaryotic and eukaryotic NADP-isocitrate dehydrogenases. Wild-type and all mutant enzymes were expressed in Escherichia coli and purified to homogeneity. These mutations do not alter the secondary structure or dimerization state of the mutants. The D375N and K260Q mutants exhibit, respectively, a 15- and 28-fold increase in K(m) for NADP, along with marked decreases in V(max) as compared to wild-type enzyme. In contrast, replacing Lys(374), which was previously proposed to contribute to apparent coenzyme affinity, does not change the enzyme's kinetic parameters. T373S exhibits similar kinetic parameters to those of wild-type while T373A and T373V mutations reduce the V(max) values of the resulting enzymes to 1 and 20%, respectively of that of wild-type. We conclude that a hydroxyl group at position 373 is required for effective enzyme function and that Asp(375) and Lys(260) are critical amino acids contributing to coenzyme affinity as well as catalysis by porcine NADP-isocitrate dehydrogenase.  相似文献   

15.
Antipolarity in the ilv operon of Escherichia coli K-12   总被引:9,自引:7,他引:2       下载免费PDF全文
The genes governing three of the enzymes of the isoleucine-valine biosynthetic pathway form the operon: operator-ilvA-ilvD-ilvE. The enzymes are: ilvA, l-threonine deaminase; ilvD, dihydroxy acid dehydrase; and ilvE, transaminase B. A nonsense mutation in the ilvD gene (D-ochre) and a nonsense mutation in the ilvE gene (E-amber) affect the properties of the proximal gene product, l-threonine deaminase (TD), in addition to inactivating the enzymes produced by the genes in which the mutations have occurred. The D-ochre mutation causes TD to move in diffusion and gel filtration experiments as though it were 30% smaller than the wild-type enzyme. The E-amber mutation causes TD to move in similar experiments as though it were much larger than the wild-type enzyme. Both mutations completely abolish the sensitivity of TD to l-isoleucine, the normal feedback inhibitor of the wild-type enzyme. The effects of the nonsense mutations on TD can be reversed in three ways: by genetic reversion of the D-ochre mutation; by treatment of the altered enzymes with 3.0 m urea; and by forming a heterozygous diploid, containing the wild-type allele as well as the mutant allele of ilvD or ilvE. The results suggest that the subunits of TD undergo abnormal aggregation in the presence of the partial polypeptides produced by the mutant alleles of ilvD or ilvE; multi-enzyme aggregates in extracts of wild type, however, could not be detected.  相似文献   

16.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

17.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

18.
19.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

20.
Alcohol dehydrogenase from Rhizopus javanicus.   总被引:3,自引:3,他引:0       下载免费PDF全文
T Yoneya  Y Sato 《Applied microbiology》1979,37(6):1073-1078
Alcohol dehydrogenase of Rhizopus javanicus was purified, and its physical and chemical characteristics were determined. The intact enzyme was shown to have a molecular weight of approximately 60,000. Since the smallest apparent subunit was 14,000, the enzyme was presumed to be composed of four subunits. The crude mycelial extract contained multiple forms of the enzyme, which were separated by ion-exchange chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号