首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

8.
9.
Functional studiessupport the presence of the Na+-HCO3cotransporter (NBC) in corneal endothelium and possibly cornealepithelium; however, molecular identification and membrane localizationhave not been reported. To test whether NBC is expressed in bovine cornea, Western blotting was performed, which showed a single band at~130 kDa for freshly isolated and cultured endothelial cells, but noband for epithelium. Two isoforms of NBC have recently been cloned inkidney (kNBC) and pancreas (pNBC). RT-PCR was run using cultured andfresh bovine corneal endothelial and fresh corneal epithelial total RNAand specific primers for kNBC and pNBC. RT-PCR analysis for pNBC waspositive in endothelium and weak in epithelium. The RT-PCR product wassubcloned and confirmed as pNBC by sequencing. No specific bands forkNBC were obtained from corneal cells. Indirect immunofluorescence andconfocal microscopy indicated that NBC locates predominantly to thebasolateral membrane in corneal endothelial cells. Furthermore,Na+-dependent HCO3 fluxes andHCO3-dependent cotransport with Na+ wereelicited only from the basolateral side of corneal endothelial cells.Therefore, we conclude that pNBC is present in the basolateral membraneof both fresh and cultured bovine corneal endothelium and weaklyexpressed in the corneal epithelium.

  相似文献   

10.
Using the pH-sensitive absorbance of 5 (and 6)-carboxy-4',5'- dimethylfluorescein, we investigated the regulation of cytoplasmic pH (pHi) in monkey kidney epithelial cells (BSC-1). In the absence of HCO3-, pHi is 7.15 +/- 0.1, which is not significantly different from pHi in 28 mM HCO3-, 5% CO2 (7.21 +/- 0.07). After an acid load, the cells regulate pHi in the absence of HCO3- by a Na+ (or Li+)-dependent, amiloride-inhibitable mechanism (indicative of Na+/H+ antiport). In 28 mM HCO3-, while still dependent on Na+, this regulation is only blocked in part by 1 mM amiloride. A partial block is also observed with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (1 mM). With cells pretreated with DIDS, 1 mM amiloride nearly totally inhibits this regulation. Cl- had no effect on pHi regulation in the acidic range. In HCO3(-)-free saline, Na+ removal leads to an amiloride-insensitive acidification, which is dependent on Ca2+. In 28 mM HCO3-, Na+ (and Ca2+) removal led to a pronounced reversible and DIDS-sensitive acidification. When HCO3- was lowered from 46 to 10 mM at constant pCO2 (5%), pHi dropped by a DIDS-sensitive mechanism. Identical changes in pHo (7.6 to 6.9) in the nominal absence of HCO3- led to smaller changes of pHi. In the presence but not in the absence of HCO3-, removal of Cl- led to a DIDS-sensitive alkalinization. This was also observed in the nominal absence of Na+, which leads to a sustained acidification. It is concluded that in nominally bicarbonate-free saline, the amiloride-sensitive Na+/H+ antiport is the predominant mechanism of pHi regulation at acidic pHi, while being relatively inactive at physiological values of pHi. In bicarbonate saline, two other mechanisms effect pHi regulation: a DIDS-sensitive Na+-HCO3- symport, which contributes to cytoplasmic alkalinization, and a DIDS-sensitive Cl-/HCO3- exchange, which is apparently independent of Na+.  相似文献   

11.
12.
In secretory epithelia, activation of PKC by phorbol ester and carbachol negatively regulates Cl secretion, the transport event of secretory diarrhea. Previous studies have implicated the basolateral Na+-K+-2Cl cotransporter (NKCC1) as a target of PKC-dependent inhibition of Cl secretion. In the present study, we examined the regulation of surface expression of NKCC1 in response to the activation of PKC. Treatment of confluent T84 intestinal epithelial cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (PMA) reduced the amount of NKCC1 accessible to basolateral surface biotinylation. Loss of cell surface NKCC1 was due to internalization as shown by 1) the resistance of biotinylated NKCC1 to surface biotin stripping after incubation with PMA and 2) indirect immunofluorescent labeling. PMA-induced internalization of NKCC1 is dependent on the -isoform of PKC as determined on the basis of sensitivity to a panel of PKC inhibitors. The effect of PMA on surface expression of NKCC1 was specific because PMA did not significantly alter the amount of Na+-K+-ATPase or E-cadherin available for surface biotinylation. After extended PMA exposure (>2 h), NKCC1 became degraded in a proteasome-dependent fashion. Like PMA, carbachol reduced the amount of NKCC1 accessible to basolateral surface biotinylation in a PKC--dependent manner. However, long-term exposure to carbachol did not result in degradation of NKCC1; rather, NKCC1 that was internalized after exposure to carbachol was recycled back to the cell membrane. PKC--dependent alteration of NKCC1 surface expression represents a novel mechanism for regulating Cl secretion. endocytosis; recycling; ion transporters  相似文献   

13.
Westudied the phosphorylation of the secretoryNa+-K+-2Cl cotransporter (NKCC1)in rat parotid acinar cells. We have previously shown that NKCC1activity in these cells is dramatically upregulated in response to-adrenergic stimulation and that this upregulation correlates withNKCC1 phosphorylation, possibly due to protein kinase A (PKA). We showhere that when ATP is added to purified acinar basolateral membranes(BLM), NKCC1 is phosphorylated as a result of membrane-associatedprotein kinase activity. Additional NKCC1 phosphorylation is seen whenPKA is added to BLMs, but our data indicate that this is due to aneffect of PKA on endogenous membrane kinase or phosphatase activities,rather than its direct phosphorylation of NKCC1. Also, phosphopeptidemapping demonstrates that these phosphorylations do not take place atthe site associated with the upregulation of NKCC1 by -adrenergicstimulation. However, this upregulatory phosphorylation can be mimickedby the addition of cAMP to permeabilized acini, and this effect can beblocked by a specific PKA inhibitor. These latter results provide good evidence that PKA is indeed involved in the upregulatoryphosphorylation of NKCC1 and suggest that an additional factor presentin the acinar cell but absent from isolated membranes is required to bring about the phosphorylation.

  相似文献   

14.
15.
The sarcolemmal Na(+)-HCO cotransporter (NBC) is stimulated by intracellular acidification and acts as an acid extruder. We examined the role of the ERK pathway of the MAPK cascade as a potential mediator of NBC activation by intracellular acidification in the presence and absence of angiotensin II (ANG II) in adult rat ventricular myocytes. Intracellular pH (pH(i)) was recorded with the use of seminaphthorhodafluor-1. The NH method was used to induce an intracellular acid load. NBC activation was significantly decreased with the ERK inhibitors PD-98059 and U-0126. NBC activity after acidification was increased in the presence of ANG II (pH(i) range of 6.75-7.00). ANG II plus PD-123319 (AT(2) antagonist) still increased NBC activity, whereas ANG II plus losartan (AT(1) antagonist) did not affect it. ERK phosphorylation (measured by immunoblot analysis) during intracellular acidification was increased by ANG II, an effect that was abolished by losartan and U-0126. In conclusion, the MAPK(ERK)-dependent pathway facilitates the rate of pH(i) recovery from acid load through NBC activity and is involved in the AT(1) receptor-mediated stimulation of such activity by ANG II.  相似文献   

16.
The "secretory" Na+-K+-2Cl- cotransporter, NKCC1, is a member of a small gene family of electroneutral cation-chloride cotransporters (CCCs) with 9 homologues in vertebrates. A number of these transporters, including NKCC1 itself, have been shown to exist as homodimers in the membrane, suggesting that this may be a common feature of the CCCs. Here we employ chemical cross-linking studies, a novel co-immunoprecipition assay, and NKCC1/CCC chimeras to further explore the basis and significance of NKCC1 dimerization. An N-terminally truncated NKCC1 (nttNKCC1), in which the first 20 kDa of the 28 kDa cytosolic N-terminus are deleted, forms homodimers as well as heterodimers with full-length NKCC1, indicating that this region of N-terminus is not required for dimerization. On the other hand, replacing the 50 kDa NKCC1 C-terminus with that of several other non-NKCC1 homologues results in chimeric proteins that form homodimers but show little or no heterodimerization with NKCC1, demonstrating that the C-terminus of NKCC1 plays an essential role in dimerization and that NKCC1 dimerization exhibits definite homologue-specificity. Using additional chimeras we find that the residues required for dimer formation lie between amino acids 751 and 998 of (rat) NKCC1. We also show that dramatically overexpressing the nonfunctional truncated protein nttNKCC1 relative to the endogenous NKCC1 in the HEK293 cells results in a modest inhibition of fluxes via the endogenous transporter and a change in its sensitivity to the specific inhibitor bumetanide. These latter results indicate that there is a functional interaction between dimer subunits but that nonfunctional subunits do not necessarily have a dominant negative effect as has been previously proposed.  相似文献   

17.
18.
Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Pathways for HCO3- transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl(-)-HCO3- exchange was assessed directly by 36Cl- tracer flux measurements and indirectly by determinations of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake compared to Cl- uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl- for HCO3- was suggested by the HCO3- gradient-induced concentrative accumulation of intravesicular Cl-. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3- gradient-driven Cl- uptake further suggesting chemical as opposed to electrical Cl(-)-HCO3- exchange coupling. Although basolateral membrane vesicle Cl- uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl- conductive pathway served to distinguish this mode of Cl- translocation from HCO3- gradient-driven Cl- uptake. No evidence for K+/Cl- cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3- dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl- concentration gradient. The basolateral membrane vesicle origin of the observed Cl(-)-HCO3- exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl- on HCO3- gradient-driven Na+ uptake suggesting a basolateral membrane Na+-HCO3- for Cl- exchange mechanism, no effect of Na+ on Cl-HCO3- exchange was observed in the present study.  相似文献   

19.
Inward Na(+)-HCO(3)(-) cotransport has previously been demonstrated in acidified duodenal epithelial cells, but the identity and localization of the mRNAs and proteins involved have not been determined. The molecular expression and localization of Na(+)-HCO(3)(-) cotransporters (NBCs) were studied by RT-PCR, sequence analysis, and immunohistochemistry. By fluorescence spectroscopy, the intracellular pH (pH(i)) was recorded in suspensions of isolated murine duodenal epithelial cells loaded with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Proximal duodenal epithelial cells expressed mRNA encoding two electrogenic NBC1 isoforms and the electroneutral NBCn1. Both NBC1 and NBCn1 were localized to the basolateral membrane of proximal duodenal villus cells, whereas the crypt cells did not label with the anti-NBC antibodies. DIDS or removal of extracellular Cl(-) increased pH(i), whereas an acidification was observed on removal of Na(+) or both Na(+) and Cl(-). The effects of inhibitors and ionic dependence of acid/base transporters were consistent with both inward and outward Na(+)-HCO(3)(-) cotransport. Hence, we propose that NBCs are involved in both basolateral electroneutral HCO(3)(-) transport as well as basolateral electrogenic HCO(3)(-) transport in proximal duodenal villus cells.  相似文献   

20.
Patterns of salivary HCO(3)(-) secretion vary and depend on species and gland types. However, the identities of the transporters involved in HCO(3)(-) transport and the underlying mechanism of intracellular pH (pH(i)) regulation in salivary glands still remain unclear. In this study, we examined the expression of the Na(+)-HCO(3)(-) cotransporter (NBC) and its role in pH(i) regulation in guinea pig salivary glands, which can serve as an experimental model to study HCO(3)(-) transport in human salivary glands. RT-PCR, immunohistochemistry, and pH(i) measurements from BCECF-AM-loaded cells were performed. The amiloride-sensitive Na(+)/H(+) exchanger (NHE) played a putative role in pH(i) regulation in salivary acinar cells and also appeared to be involved in regulation in salivary ducts. In addition to NHE, NBC also played a role in pH(i) regulation in both acini and ducts. In the parotid gland, NBC1 was functionally expressed in the basolateral membrane (BLM) of acinar cells and the luminal membrane (LM) of ducts. In the submandibular gland, NBC1 was expressed only in the BLM of ducts. NBC1 expressed in these two types of salivary glands takes up HCO(3)(-) and is involved in pH(i) regulation. Although NBC3 immunoreactivity was also detected in submandibular gland acinar cells and in the ducts of both glands, it is unlikely that NBC3 plays any role in pH(i) regulation. We conclude that NBC1 is functionally expressed and plays a role in pH(i) regulation in guinea pig salivary glands but that its localization and role are different depending on the type of salivary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号