首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of Methanobrevibacter smithii altered the susceptibility of the anaerobic fungi Neocallimastix frontalis and Piromonas communis to the carboxylic ionophores monensin and lasalocid. The ionophores depressed growth (measured by chitin accretion), the uptake of glucose and the production of H2, formate and acetate by the fungi growing axenically in semi-solid medium. In the presence of M. smithii , the sensitivity of the fungi to monensin and lasalocid was decreased. For example, the uptake of glucose by N. frontalis strain RE1 in the culture was reduced to 50% of the control value by monensin at 0.5 mUg/ml. In the presence of M. smithii strain PS, approximately three tunes as much monensin was needed to bring about the same effect. In similar tests, the sensitivity of strain RE1 to lasalocid was decreased about nine-fold in the presence of M. smithii. The effect was not observed if the methanogens were killed by autoclaving before inoculation. It is suggested that the enhanced resistance to ionophores in the presence of M. smithii is a consequence of changes in the energy metabolism of the fungi growing in co-culture.  相似文献   

2.
The effect of coumarin (1,2 benzopyrone) on glucose utilisation by the anaerobic rumen fungi Neocallimastix frontalis and N. patriciarum has been compared with the effect of p-coumaric acid. Both compounds largely inhibited glucose utilisation by N. patriciarum strain Cx when present in the medium at a concentration of 2.5 mM, and had a similar effect on N. frontalis strain RE1 at 5 mM. Although in earlier studies co-culturing rumen fungi with Methanobrevibacter smithii enhanced resistance to ionophores, no comparable protective effect of M. smithii was found in the present study.  相似文献   

3.
Three isolates of Neocallimastix frontalis grown in pure culture with glucose as substrate differed in their response to the presence of lasalocid in the growth medium. For two strains (RE1 and RK21) hydrogen production and glucose uptake were reduced to 50% or less of the control values in the presence of lasalocid at 0–25 μg/ ml. A third strain (PNK2) retained significant fermentative ability in the presence of at least four times this amount of lasalocid. Lasalocid was rather less inhibitory to the solubilization of straw by these fungi, PNK2 again providing the most resistant strain. It is concluded that the use of lasalocid in ruminant feeds is likely to have a strain selective effect on the rumen population of Neocallimastix.  相似文献   

4.
The antimicrobial activities of monensin and lasalocid against representative strains of ruminal bacteria were evaluated in medium containing three different concentrations of potassium (1.3, 7.9, or 23.3 mM). The growth of Eubacterium ruminantium was inhibited by low concentrations of ionophores (less than or equal to 0.16 mg/liter), while the strain of Streptococcus bovis tested was resistant to high concentrations of ionophores (40 mg/liter) at all potassium concentrations tested. The MICs of the ionophores for strains of Bacteroides succinogenes, Butyrivibrio fibrisolvens, Ruminococcus albus, and Ruminococcus flavefaciens and for one strain of Bacteroides ruminicola increased with increasing potassium concentrations in the medium. High concentrations of ionophores (40 mg/liter) decreased the maximum cell yields or increased the lag times or both in cultures of one strain of Bacteroides ruminicola and two strains of Selenomonas ruminantium but did not completely inhibit the growth of these organisms. Increased potassium concentrations in the medium (from 7.9 to 23.3 mM) decreased the lag times or increased the cell yields or both when these three strains were grown in ionophore-containing medium, while the activities of lasalocid and monensin against these organisms were enhanced in the medium containing low potassium concentrations (1.3 mM). The data from this study suggest that extracellular potassium concentrations may influence the antimicrobial activities of ionophores in the rumen.  相似文献   

5.
The antimicrobial activities of monensin and lasalocid against representative strains of ruminal bacteria were evaluated in medium containing three different concentrations of potassium (1.3, 7.9, or 23.3 mM). The growth of Eubacterium ruminantium was inhibited by low concentrations of ionophores (less than or equal to 0.16 mg/liter), while the strain of Streptococcus bovis tested was resistant to high concentrations of ionophores (40 mg/liter) at all potassium concentrations tested. The MICs of the ionophores for strains of Bacteroides succinogenes, Butyrivibrio fibrisolvens, Ruminococcus albus, and Ruminococcus flavefaciens and for one strain of Bacteroides ruminicola increased with increasing potassium concentrations in the medium. High concentrations of ionophores (40 mg/liter) decreased the maximum cell yields or increased the lag times or both in cultures of one strain of Bacteroides ruminicola and two strains of Selenomonas ruminantium but did not completely inhibit the growth of these organisms. Increased potassium concentrations in the medium (from 7.9 to 23.3 mM) decreased the lag times or increased the cell yields or both when these three strains were grown in ionophore-containing medium, while the activities of lasalocid and monensin against these organisms were enhanced in the medium containing low potassium concentrations (1.3 mM). The data from this study suggest that extracellular potassium concentrations may influence the antimicrobial activities of ionophores in the rumen.  相似文献   

6.
Three different carboxylic ionophores (monensin, nigericin and lasalocid) were each found capable of causing a relatively complete block of the lysosomal (i.e., methylamine-sensitive) protein degradation in isolated rat hepatocytes. Monensin was found to be the most specific in action, as it had no effect on non-lysosomal degradation and did not bring about any substantial inhibition of protein synthesis. Morphometric examination of electron micrographs revealed that monensin causes an accumulation of early forms of autophagic vacuoles and blocks the swelling of lysosomes seen in the presence of methylamine. The results indicate that monensin inhibits lysosomal protein degradation by affecting lysosomal pH.  相似文献   

7.
To investigate the effect of ionophores on Cl- distribution in human erythrocyte suspensions, we measured the membrane potential by using 19F and 31P NMR methods. Incubation of human erythrocytes with 0.005 mM of the neutral ionophores valinomycin and nonactin resulted in membrane potentials of -21.2 and -17.8 mV in the presence and absence of DIDS. However, 0.020 mM of the carboxylic ionophores lasalocid, monensin, and nigericin yielded membrane potentials similar to those measured in the absence of ionophore (-9.4 mV). In methanol, the 35Cl- NMR linewidth in the presence of valinomycin was twice as broad as those observed in the presence of carboxylic ionophores, suggesting that neutral ionophores induce Cl- efflux in part via ion pairing.  相似文献   

8.
Bacteroides ruminicola M384 was grown in the presence of increasing concentrations of tetronasin, an ionophore that has been developed as a feed additive for ruminants. The resulting culture, B. ruminicola M384/TnR, was then maintained in medium containing 0.1 microgram tetronasin/ml. Growth of the parent strain was eliminated by the addition of 0.1 micrograms tetronasin/ml, but the growth rate of B. ruminicola M384/TnR, which grew more slowly than the parent strain, was unaffected by adding tetronasin. Bacteroides ruminicola M384/TnR retained its resistance to tetronasin even after repeated subculture in the absence of the ionophore, suggesting that a mutation had occurred. The absence of plasmids in individual colonies of B. ruminicola M384/TnR implied that the mutation was chromosomal. Bacteroides ruminicola M384/TnR was also more resistant to the ionophores monensin and lasalocid and, to a lesser degree, to the antibiotic avoparcin than B. ruminicola M384. Binding of [14C]tetronasin to B. ruminicola M384/TnR was lower than binding of the ionophore to the parent stain, and this difference was eliminated by washing cells with EDTA. The peptidolytic activity of B. ruminicola M384 towards triphenylalanine (Mr = 460) was unaffected in B. ruminicola M384/TnR, but the rate of breakdown tetraphenylalanine (Mr = 607) was decreased. This difference was also abolished by EDTA. It was concluded that growth of B. ruminicola in the presence of tetronasin resulted in a mutation affecting the permeability of the cell envelope, such that permeation of tetronasin and molecules of a similar size (Mr = 628) was decreased.  相似文献   

9.
Batch cultures (pH 6.7) of Streptococcus bovis JB1 were severely inhibited by 1.25 and 5 microM lasalocid and monensin, respectively, even though large amounts of glucose remained in the medium. However, continuous cultures tolerated as much as 10 and 20 microM, respectively, and used virtually all of the glucose. Although continuous cultures grew with high concentrations of ionophore, the yield of bacterial protein decreased approximately 10-fold. When pH was decreased from 6.7 to 5.7, the potency of both ionophores increased, but lasalocid always caused a larger decrease in yield. The increased activity of lasalocid at pH 5.7 could largely be explained by an increased binding of the ionophore to the cell membrane. Because monensin did not show an increased binding at low pH, some other factor (e.g., ion turnover) must have been influencing its activity. There was a linear increase in lasalocid binding as the concentration increased, but monensin binding increased markedly at high concentrations. Based on the observations that (i) S. bovis cells bound significant amounts of ionophore (the ratio of ionophore to cell material was more important than the absolute concentration), (ii) batch cultures responded differently from continuous cultures, and (iii) pH can have a marked effect on ionophore activity, it appears that the term "minimum inhibitory concentration" may not provide an accurate assessment of microbial growth inhibition in vivo.  相似文献   

10.
The antimicrobial activity of the novel ionophore tetronasin (formerly ICI 139603) was compared with that of monensin for the growth of ruminal bacteria, protozoa, and an anaerobic fungus. The potency of tetronasin toward most bacteria and the fungus was an order of magnitude or more greater than that of monensin. Lactobacillus casei was 55 times more sensitive to tetronasin than to monensin, indicating a potential role for tetronasin in reversing lactic acidosis. Bacteria with a gram-positive ultrastructure were generally sensitive to the ionophores and unable to adapt to grow in their presence. The exception was the cellulolytic Ruminococcus flavefaciens, which adapted during successive cultivation on media with increasing ionophore concentrations to grow at 100-fold higher concentrations of tetronasin than were initially lethal to the organism. Gram-negative bacteria were more resistant and generally able to adapt to grow in the presence of both ionophores. An in vivo trial with cattle and in vitro growth experiments indicated that the effect of tetronasin on ciliate protozoa was minor. In vitro experiments measuring hydrogen production by Neocallimastix frontalis suggested that this fungus would be unable to survive in ruminants receiving tetronasin.  相似文献   

11.
Bacteroides ruminicola M384 was grown in the presence of increasing concentrations of tetronasin, an ionophore that has been developed as a feed additive for ruminants. The resulting culture, B. ruminicola M384/TnR, was then maintained in medium containing 0.1 pg tetronasin/ml. Growth of the parent strain was eliminated by the addition of 0.1 ug tetronasin/ml, but the growth rate of B. ruminicola M384/TnR, which grew more slowly than the parent strain, was unaffected by adding tetronasin. Bacteroides ruminicola M384/TnR retained its resistance to tetronasin even after repeated subculture in the absence of the ionophore, suggesting that a mutation had occurred. The absence of plasmids in individual colonies of B. ruminicola M384/TnR implied that the mutation was chromosomal. Bacteroides ruminicola M384/TnR was also more resistant to the ionophores monensin and lasalocid and, to a lesser degree, to the antibiotic avoparcin than B. ruminicola M384. Binding of [14C]tetronasin to B. ruminicola M384/TnR was lower than binding of the ionophore to the parent stain, and this difference was eliminated by washing cells with EDTA. The peptidolytic activity of B. ruminicola M384 towards triphenylalanine ( M r= 460) was unaffected in B. ruminicola M384/TnR, but the rate of breakdown of tetra-phenylalanine ( M r= 607) was decreased. This difference was also abolished by EDTA. It was concluded that growth of B. ruminicola in the presence of tetronasin resulted in a mutation affecting the permeability of the cell envelope, such that permeation of tetronasin and molecules of a similar size ( M r= 628) was decreased.  相似文献   

12.
The antimicrobial activity of the novel ionophore tetronasin (formerly ICI 139603) was compared with that of monensin for the growth of ruminal bacteria, protozoa, and an anaerobic fungus. The potency of tetronasin toward most bacteria and the fungus was an order of magnitude or more greater than that of monensin. Lactobacillus casei was 55 times more sensitive to tetronasin than to monensin, indicating a potential role for tetronasin in reversing lactic acidosis. Bacteria with a gram-positive ultrastructure were generally sensitive to the ionophores and unable to adapt to grow in their presence. The exception was the cellulolytic Ruminococcus flavefaciens, which adapted during successive cultivation on media with increasing ionophore concentrations to grow at 100-fold higher concentrations of tetronasin than were initially lethal to the organism. Gram-negative bacteria were more resistant and generally able to adapt to grow in the presence of both ionophores. An in vivo trial with cattle and in vitro growth experiments indicated that the effect of tetronasin on ciliate protozoa was minor. In vitro experiments measuring hydrogen production by Neocallimastix frontalis suggested that this fungus would be unable to survive in ruminants receiving tetronasin.  相似文献   

13.
Pentoses and hexoses were removed simultaneously from lucerne ( Medicago sativa ) stem by Piromonas communis and Neocallimastix frontalis growing axenically or in coculture with Methanobrevibacter smithii . In monocultures, more arabinose (68–71%) than glucose (52–53%) or xylose (25–30%) was removed. In cocultures, xylose solubilization from cell walls increased for P. communis whereas glucose solubilization increased for both fungi. The rates of sugar removal were monosaccharide-dependent. For both fungi, the specific activities of extracellular hydrolytic enzymes were markedly elevated in methanogenic cocultures.  相似文献   

14.
AIMS: To examine the effects of ionophores on Salmonella and Escherichia coli O157:H7 in pure and mixed ruminal fluid cultures. METHODS AND RESULTS: Four Salmonella serotypes (Dublin, Derby, Typhimurium, and Enteriditis) and two strains of E. coli O157:H7 (ATCC 43895 and FDIU 6058) were cultured in the presence of varying concentrations of ionophores (monensin, lasalocid, laidlomycin propionate, and bambermycin) in pure and mixed ruminal fluid cultures. Bacterial growth rates in pure culture were not affected (P > 0.10) by ionophores at concentrations up to 10 times the approximate rumen ionophore concentration under normal feeding regimens. Likewise, ionophores had no effect (P > 0.10) on Salmonella or E. coli CFU plated from 24-h ruminal fluid incubations. Ionophore treatment decreased (P < 0.01) the acetate : propionate ratio in ruminal fluid cultures as expected. CONCLUSIONS: Ionophores had no effect on the foodborne pathogens Salmonella and E. coli O157:H7 in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that ionophore feeding would have little or no effect on Salmonella or E. coli populations in the ruminant.  相似文献   

15.
New strains with enhanced resistance to monensin were developed from Prevotella (Bacteroides) ruminicola subsp. ruminicola 23 and P. ruminicola subsp. brevis GA33 by stepwise exposure to increasing concentrations of monensin. The resulting resistant strains (23MR2 and GA33MR) could initiate growth in concentrations of monensin which were 4 to 40 times greater than those which inhibited the parental strains. Resistant strains also showed enhanced resistance to nigericin and combinations of monensin and nigericin but retained sensitivity to lasalocid. Glucose utilization in cultures of the monensin-sensitive strains (23 and GA33) and one monensin-resistant strain (23MR2) was retarded but not completely inhibited when logarithmic cultures were challenged with monensin (10 mg/liter). Monensin challenge of cultures of the two monensin-sensitive strains (23 and GA33) was characterized by 78 and 51% decreases in protein yield (milligrams of protein per mole of glucose utilized), respectively. Protein yields in cultures of resistant strain 23MR2 were decreased by only 21% following monensin challenge. Cell yields and rates of glucose utilization by resistant strains GA33MR were not decreased by challenge with 10 mg of monensin per liter. Resistant strains produced greater relative proportions of propionate and less acetate than the corresponding sensitive strains. The relative amounts of succinate produced were greater in cultures of strains 23, GA33, and 23MR2 following monensin challenge. However, only minor changes in end product formation were associate with monensin challenge of resistant strain GA33MR. These results suggest that monensin has significant effects on both the growth characteristics and metabolic activities of these predominant, gram-negative ruminal bacteria.  相似文献   

16.
Three different ruminal anaerobic fungi, Neocallimastix frontalis PNK2, Sphaeromonas communis B7, and Piromonas communis B19, were grown axenically or in coculture with Methanobrevibacter smithii on xylan. N. frontalis and S. communis in monoculture and coculture accumulated xylobiose, xylose, and arabinose in the growth medium; arabinose was not metabolized, but xylobiose and xylose were subsequently used. The transient accumulation of xylose was much less evident in cocultures. Both the rate and extent of xylan utilization were increased by coculturing, and metabolite profiles became acetogenic as a result of interspecies hydrogen transfer; more acetate and less lactate were formed, while formate and hydrogen did not accumulate. For each of the three fungi, there were marked increases in the specific activities of extracellular xylanase (up to fivefold), alpha-l-arabinofuranosidase (up to fivefold), and beta-d-xylosidase (up to sevenfold) upon coculturing. The stimulating effect on fungal enzymes from coculturing with M. smithii was independent of the growth substrate, and the magnitude of the stimulation varied according to the enzymes and the incubation time. For an N. frontalis-M. smithii coculture, the positive stimulation was maintained during an extended (18-day) incubation period, and this affected not only hemicellulolytic enzymes but also polysaccharidase and glycoside hydrolase enzymes that were not involved in xylan breakdown. The specific activity of cell-bound endopeptidase was not increased under the coculture conditions used in this study. The higher enzyme activities in cocultures are discussed in relation to catabolite repression.  相似文献   

17.
New strains with enhanced resistance to monensin were developed from Prevotella (Bacteroides) ruminicola subsp. ruminicola 23 and P. ruminicola subsp. brevis GA33 by stepwise exposure to increasing concentrations of monensin. The resulting resistant strains (23MR2 and GA33MR) could initiate growth in concentrations of monensin which were 4 to 40 times greater than those which inhibited the parental strains. Resistant strains also showed enhanced resistance to nigericin and combinations of monensin and nigericin but retained sensitivity to lasalocid. Glucose utilization in cultures of the monensin-sensitive strains (23 and GA33) and one monensin-resistant strain (23MR2) was retarded but not completely inhibited when logarithmic cultures were challenged with monensin (10 mg/liter). Monensin challenge of cultures of the two monensin-sensitive strains (23 and GA33) was characterized by 78 and 51% decreases in protein yield (milligrams of protein per mole of glucose utilized), respectively. Protein yields in cultures of resistant strain 23MR2 were decreased by only 21% following monensin challenge. Cell yields and rates of glucose utilization by resistant strains GA33MR were not decreased by challenge with 10 mg of monensin per liter. Resistant strains produced greater relative proportions of propionate and less acetate than the corresponding sensitive strains. The relative amounts of succinate produced were greater in cultures of strains 23, GA33, and 23MR2 following monensin challenge. However, only minor changes in end product formation were associate with monensin challenge of resistant strain GA33MR. These results suggest that monensin has significant effects on both the growth characteristics and metabolic activities of these predominant, gram-negative ruminal bacteria.  相似文献   

18.
It is thought that monensin increases the efficiency of feed utilization by cattle by altering the rumen fermentation. We studied the effect of monensin and the related ionophore antibiotic lasalocid-sodium (Hoffman-LaRoche) on the growth of methanogenic and rumen saccharolytic bacteria in a complex medium containing rumen fluid. Ruminococcus albus, Ruminococcus flavefaciens, and Butyrivibrio fibrisolvens were inhibited by 2.5 μg of monensin or lasalocid per ml. Growth of Bacteroides succinogenes and Bacteroides ruminicola was delayed by 2.5 μg of monensin or lasalocid per ml. Populations of B. succinogenes and B. ruminicola that were resistant to 20 μg of either drug per ml were rapidly selected by growth in the presence of each drug at 5.0 μg/ml. Selenomonas ruminantium was insensitive to 40 μg of monensin or lasalocid per ml. Either antibiotic (10 μg/ml) inhibited Methanobacterium MOH, Methanobacterium formicicum, and Methanosarcina barkeri MS. Methanobacterium ruminantium PS was insensitive to 40 μg of monensin or 20 μg of lasalocid per ml. The methanogenic strain 442 was insensitive to 40 μg of monensin but sensitive to 10 μg of lasalocid per ml. The results suggest that monensin or lasalocid acts in the rumen by selecting for succinate-forming Bacteroides and for S. ruminantium, a propionate producer that decarboxylates succinate to propionate. The selection could lead to an increase in rumen propionate formation. Selection against H2 and formate producers, e.g. R. albus, R. flavefaciens, and B. fibrisolvens, could lead to a depression of methane production in the rumen.  相似文献   

19.
Summary Glucose uptake by whole cells of Bacteroides ruminicola B14 is constitutive. Potassium concentrations between 10 and 150 mm stimulated uptake over fourfold, while sodium had little effect on uptake. The involvement of potassium in glucose uptake by B. ruminicola was supported by strong inhibition of uptake by the ionophores valinomycin, lasalocid, and monensin. The electron transport inhibitor antimycin A had little effect on uptake, but menadione and acriflavine inhibited uptake by 30 and 48%, respectively. Potent inhibitors of uptake included oxygen, p-chloromercuribenzoate, HgCl2, and o-phenanthroline. Sodium arsenate decreased uptake by 40%, suggesting that a high-energy phosphate compound and possibly a binding protein may be involved in glucose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone and 2,4-dinitrophenol inhibited glucose uptake by 37 and 22%, respectively. Little change in uptake activity was observed at extracellular pH values between 4.0 and 8.0. Excess (10 mm) cellobiose, maltose, and sucrose inhibited glucose uptake less than 15%. High levels (0.15% w/v) of p-coumaric acid and vanillin decreased uptake by 32 and 37%, respectively, while 0.15% ferulic acid decreased uptake by 15%.  相似文献   

20.
Summary Granulosa cells, isolated by collagenase digestion from the mature ovarian follicle of laying hens, were incubated in the presence of two ionophores, lasalocid (X537A) and ionomycin, to determine their effects on basal and stimulated steroidogenesis, as well as their effects on various cell parameters including DNA, RNA, and protein synthesis. Both ionophores caused a dose-dependent inhibition of agonist-promoted progesterone production and, in the presence of calcium, a small but significant increase in basal output of progesterone. Whereas the conversion of pregnenolone to progesterone was unaffected by the ionophores, the activity of cholesterol side-chain cleavage enzyme was inhibited in a dose-related manner. Both ionophores decreased cellular levels of ATP and inhibited the incorporation of radioactively-labeled precursors into DNA, RNA, and proteins. Morphologically, ionophoretreated cells showed swelling of the rough endoplasmic reticulum. Similar morphological changes were also observed in cells treated with oligomycin, a known metabolic inhibitor. These results suggest that the ionophores lasalocid and ionomycin impair release of energy and thereby exert the principal cause of the inhibited steroidegenic response by granulosa cells to a variety of agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号