首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes encoding 2-deoxy-d-ribose-5-phosphate aldolase (DERA) homologues from two hyperthermophiles, the archaeon Pyrobaculum aerophilum and the bacterium Thermotoga maritima, were expressed individually in Escherichia coli, after which the structures and activities of the enzymes produced were characterized and compared with those of E. coli DERA. To our surprise, the two hyperthermophilic DERAs showed much greater catalysis of sequential aldol condensation using three acetaldehydes as substrates than the E. coli enzyme, even at a low temperature (25 degrees C), although both enzymes showed much less 2-deoxy-d-ribose-5-phosphate synthetic activity. Both the enzymes were highly resistant to high concentrations of acetaldehyde and retained about 50% of their initial activities after a 20-h exposure to 300 mM acetaldehyde at 25 degrees C, whereas the E. coli DERA was almost completely inactivated after a 2-h exposure under the same conditions. The structure of the P. aerophilum DERA was determined by X-ray crystallography to a resolution of 2.0 A. The main chain coordinate of the P. aerophilum enzyme monomer was quite similar to those of the T. maritima and E. coli enzymes, whose crystal structures have already been solved. However, the quaternary structure of the hyperthermophilic enzymes was totally different from that of the E. coli DERA. The areas of the subunit-subunit interface in the dimer of the hyperthermophilic enzymes are much larger than that of the E. coli enzyme. This promotes the formation of the unique dimeric structure and strengthens the hydrophobic intersubunit interactions. These structural features are considered responsible for the extremely high stability of the hyperthermophilic DERAs.  相似文献   

2.
The crystal structure of the bacterial (Escherichia coli) class I 2-deoxyribose-5-phosphate aldolase (DERA) has been determined by Se-Met multiple anomalous dispersion (MAD) methods at 0.99A resolution. This structure represents the highest-resolution X-ray structure of an aldolase determined to date and enables a true atomic view of the enzyme. The crystal structure shows the ubiquitous TIM alpha/beta barrel fold. The enzyme contains two lysine residues in the active site. Lys167 forms the Schiff base intermediate, whereas Lys201, which is in close vicinity to the reactive lysine residue, is responsible for the perturbed pK(a) of Lys167 and, hence, also a key residue in the reaction mechanism. DERA is the only known aldolase that is able to use aldehydes as both aldol donor and acceptor molecules in the aldol reaction and is, therefore, of particular interest as a biocatalyst in synthetic organic chemistry. The uncomplexed DERA structure enables a detailed comparison with the substrate complexes and highlights a conformational change in the phosphate-binding site. Knowledge of the enzyme active-site environment has been the basis for exploration of catalysis of non-natural substrates and of mutagenesis of the phosphate-binding site to expand substrate specificity. Detailed comparison with other class I aldolase enzymes and DERA enzymes from different organisms reveals a similar geometric arrangement of key residues and implies a potential role for water as a general base in the catalytic mechanism.  相似文献   

3.
A new 2-deoxy-D-ribose-5-phoshate aldolase (DERA) gene was cloned from Rhodococcus erythropolis strain DSM 311, recombinantly expressed in Escherichia coli, and purified via affinity chromatography which yielded a homo-dimeric enzyme of 44.3 kDa as apparent by size exclusion chromatography. To characterise the enzyme, investigations about pH and temperature tolerance, stability, as well as analyses on resistance to organic solvents and acetaldehyde were performed. In addition, kinetic constants of the new DERA(RE) were compared to respective values of the DERA from E. coli (DERA(EC)). Stability of DERA(RE) turned out to be a crucial factor: The pH for optimal DERA(RE) activity was determined to be 7.0, whereas the highest stability was achieved at pH 9.0 with a half-life of approximately 20 days. The optimal temperature for DERA(RE) activity was 65 °C, but coupled with a rather low stability (half-life of 2 min). The highest stability was achieved at 25 °C. The new enzyme exhibits high resistance to organic solvents and acetaldehyde with a half-life being 2.5× higher compared to DERA(EC) under the exposure of 300 mM acetaldehyde. Hence it has the potential as a new promising biocatalyst with applications in organic synthesis.  相似文献   

4.
We have identified and characterized a thermostable thioredoxin system in the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. The gene (Accession no. APE0641) of A. pernix encoding a 37 kDa protein contains a redox active site motif (CPHC) but its N-terminal extension region (about 200 residues) shows no homology within the genome database. A second gene (Accession no. APE1061) has high homology to thioredoxin reductase and encodes a 37 kDa protein with the active site motif (CSVC), and binding sites for FAD and NADPH. We cloned the two genes and expressed both proteins in E. coli. It was observed that the recombinant proteins could act as an NADPH-dependent protein disulfide reductase system in the insulin reduction. In addition, the APE0641 protein and thioredoxin reductase from E. coli could also catalyze the disulfide reduction. These indicated that APE1061 and APE0641 express thioredoxin (ApTrx) and thioredoxin reductase (ApTR) of A. pernix, respectively. ApTR is expressed as an active homodimeric flavoprotein in the E. coli system. The optimum temperature was above 90 degrees C, and the half-life of heat inactivation was about 4 min at 110 degrees C. The heat stability of ApTR was enhanced in the presence of excess FAD. ApTR could reduce both thioredoxins from A. pernix and E. coli and showed a similar molar specific activity for both proteins. The standard state redox potential of ApTrx was about -262 mV, which was slightly higher than that of Trx from E. coli (-270 mV). These results indicate that a lower redox potential of thioredoxin is not necessary for keeping catalytic disulfide bonds reduced and thereby coping with oxidative stress in an aerobic hyperthermophilic archaea. Furthermore, the thioredoxin system of aerobic hyperthermophilic archaea is biochemically close to that of the bacteria.  相似文献   

5.
O-Phosphoserine sulfhydrylase is a new enzyme found in a hyperthermophilic archaeon, Aeropyrum pernix K1. This enzyme catalyzes a novel cysteine synthetic reaction from O-phospho-l-serine and sulfide. The crystal structure of the enzyme was determined at 2.0A resolution using the method of multi-wavelength anomalous dispersion. A monomer consists of three domains, including an N-terminal domain with a new alpha/beta fold. The topology folds of the middle and C-terminal domains were similar to those of the O-acetylserine sulfhydrylase-A from Salmonella typhimurium and the cystathionine beta-synthase from human. The cofactor, pyridoxal 5'-phosphate, is bound in a cleft between the middle and C-terminal domains through a covalent linkage to Lys127. Based on the structure determined, O-phospho-l-serine could be rationally modeled into the active site of the enzyme. An enzyme-substrate complex model and a mutation experiment revealed that Arg297, unique to hyperthermophilic archaea, is one of the most crucial residues for O-phosphoserine sulfhydrylation activity. There are more hydrophobic areas and less electric charges at the dimer interface, compared to the S.typhimurium O-acetylserine sulfhydrylase.  相似文献   

6.
An open reading frame optimized for expression of 6,7-dimethyl-8-ribityl-lumazine synthase of the hyperthermophilic bacterium Aquifex aeolicus in Escherichia coli was synthesized and expressed in a recombinant E. coli strain to a level of around 15 %. The recombinant protein was purified by heat-treatment and gel-filtration. The protein was crystallized in the cubic space group I23 with the cell dimensions a = b = c = 180.8 A, and diffraction data were collected to 1.6 A resolution. The structure was solved by molecular replacement using lumazine synthase from Bacillus subtilis as search model. The structure of the A. aeolicus enzyme was refined to a resolution of 1.6 A. The spherical protein consists of 60 identical subunits with strict icosahedral 532 symmetry. The subunit fold is closely related to that of the B. subtilis enzyme (rmsd 0.80 A). The extremely thermostable lumazine synthase from A. aeolicus has a melting temperature of 119.9 degrees C. Compared to other icosahedral and pentameric lumazine synthases, the A. aeolicus enzyme has the largest accessible surface presented by charged residues and the smallest surface presented by hydrophobic residues. It also has the largest number of ion-pairs per subunit. Two ion-pair networks involving two, respectively three, stacking arginine residues assume a distinct role in linking adjacent subunits. The findings indicate the influence of the optimization of hydrophobic and ionic contacts in gaining thermostability.  相似文献   

7.
The acylpeptide hydrolases from hyperthermophilic archaeon Aeropyrum pernix K1 has a short conserved N-terminal helix in its family. The role of this N-terminal helix in the function of the hyperthermophilic enzyme, however, is unknown. Here, we investigated this question by protein engineering and biophysical methods. We found that a mutant (DeltaN21) with the N-terminal helix deleted is no longer functional at the optimum temperature for WT enzyme (95 degrees C), required for the survival of Aeropyrum pernix K1. Instead, DeltaN21 has the optimum activity at approximately 77 degrees C, with higher activities than the WT enzyme below this temperature. DeltaN21 is less stable than the WT enzyme and started unfolding at approximately 77 degrees C, indicating that the loss of the enzymatic activity of DeltaN21 at higher temperature is due to its low thermodynamic stability. In addition, we found that the salt bridges formed between the N-terminal helix and the catalytic domain of the enzyme play only a minor role in stabilizing the enzyme, suggesting that hydrophobic interactions mainly contribute to the stabilization. Since the N-terminal helix is conserved in this family of enzymes, our results suggest that the N-terminal helix is likely to play an important role for stabilizing all other enzymes in this family.  相似文献   

8.
The complete amino acid sequence of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli has been established in the following manner. After being reduced with dithiothreitol, the purified aldolase was alkylated with iodoacetamide and subsequently digested with trypsin. The resulting 19 peptide peaks observed by high performance liquid chromatography, which compared with 21 expected tryptic cleavage products, were all isolated, purified, and individually sequenced. Overlap peptides were obtained by a combination of sequencing the N-terminal region of the intact aldolase and by cleaving the intact enzyme with cyanogen bromide followed by subdigestion of the three major cyanogen bromide peptides with either Staphylococcus aureus V8 endoproteinase, endoproteinase Lys C, or trypsin after citraconylation of lysine residues. The primary structure of the molecule was determined to be as follows. (formula; see text) 2-Keto-4-hydroxyglutarate aldolase from E. coli consists of 213 amino acids with a subunit and a trimer molecular weight of 22,286 and 66,858, respectively. No microheterogeneity is observed among the three subunits. The peptide containing the active-site arginine residue (Vlahos, C. J., Ghalambor, M. A., and Dekker, E. E. (1985) J. Biol. Chem. 260, 5480-5485) was also isolated and sequenced; this arginine residue occupies position 49. The Schiff base-forming lysine residue (Vlahos, C. J., and Dekker, E. E. (1986) J. Biol. Chem. 261, 11049-11055) is located at position 133. Whereas the active-site lysine peptide of this aldolase shows 65% homology with the same peptide of 2-keto-3-deoxy-6-phosphogluconate aldolase from Pseudomonas putida, these two proteins in toto show 49% homology.  相似文献   

9.
A soluble fructose-1,6-bisphosphate aldolase enzyme has been purified 50.2-fold (2.36%) at the homogeneity from the electric organ of Electrophorus electricus by one step of DEAE-52 anion exchange chromatography followed by Superose-12 gel filtration-FPLC. Like other aldolase enzymes the E. electricus protein is a dimer with two identical subunits of 45 kDa. The N-terminal (20 residues) revealed a high homology with S. aurata (75%, goldfish), R. ratus and M. musculus (mouse, 80%) enzymes.  相似文献   

10.
The superoxide dismutase (SOD) gene of Aeropyrum pernix, a strictly aerobic hyperthermophilic archaeon, was cloned and expressed in Escherichia coli, and its gene product was characterized. The molecular mass of the protein, based on the deduced amino acid sequence, was 24.6 kDa. The sequence showed overall similarity to the sequences of known Mn- and Fe-SODs. The metal binding residues conserved in Mn- and Fe-SODs were also found in A. pernix SOD. When the SOD gene was expressed in E. coli cells, the product formed a homodimer, and contained both Mn and Fe. Metal reconstitution experiments showed that A. pernix SOD is cambialistic, i.e. active with either Fe or Mn. The specific activities were 906 U/mg with Mn and 175 U/mg with Fe. No loss of activity of Mn-reconstituted SOD was observed at 105 degrees C even after 5 h incubation. Sodium azide, an inhibitor of SODs, did not inhibit the Mn-reconstituted SOD from A. pernix even at concentrations up to 400 mM. This SOD from an aerobic hyperthermophilic archaeon, Aeropyrum pernix, was extremely thermostable and active with either Mn or Fe. With Mn as a metal cofactor, it was more thermostable, and less sensitive to sodium azide and sodium fluoride than with Fe.  相似文献   

11.
Carbon-carbon bond forming enzymes offer great potential for organic biosynthesis. Hence there is an ongoing effort to improve their biocatalytic properties, regarding availability, activity, stability, and substrate specificity and selectivity. Aldolases belong to the class of C-C bond forming enzymes and play important roles in numerous cellular processes. In several hyperthermophilic Archaea the 2-keto-3-deoxy-(6-phospho)-gluconate (KD(P)G) aldolase was identified as a key player in the metabolic pathway. The carbohydrate metabolism of the hyperthermophilic Crenarchaeote Thermoproteus tenax, for example, has been found to employ a combination of a variant of the Embden-Meyerhof-Parnas pathway and an unusual branched Entner-Doudoroff pathway that harbors a nonphosphorylative and a semiphosphorylative branch. The KD(P)G aldolase catalyzes the reversible cleavage of 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxygluconate (KDG) forming pyruvate and glyceraldehyde 3-phosphate or glyceraldehyde, respectively. In T. tenax initial studies revealed that the pathway is specific for glucose, whereas in the thermoacidophilic Crenarchaeote Sulfolobus solfataricus the pathway was shown to be promiscuous for glucose and galactose degradation. The KD(P)G aldolase of S. solfataricus lacks stereo control and displays additional activity with 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) and 2-keto-3-deoxygalactonate (KDGal), similar to the KD(P)G aldolase of Sulfolobus acidocaldarius. To address the stereo control of the T. tenax enzyme the formation of the two C4 epimers KDG and KDGal was analyzed via gas chromatography combined with mass spectroscopy. Furthermore, the crystal structure of the apoprotein was determined to a resolution of 2.0 A, and the crystal structure of the protein covalently linked to a pathway intermediate, namely pyruvate, was determined to 2.2 A. Interestingly, although the pathway seems to be specific for glucose in T. tenax the enzyme apparently also lacks stereo control, suggesting that the enzyme is a trade-off between required catabolic flexibility needed for the conversion of phosphorylated and nonphosphorylated substrates and required stereo control of cellular/physiological enzymatic reactions.  相似文献   

12.
A third novel type of dye-linked L-proline dehydrogenase (LPDH) has recently been found in the hyperthermophilic archaeon, Pyrobaculum calidifontis, by Satomura et al. The gene encoding the enzyme homologue was identified in the aerobic hyperthermophilic archaeon, Aeropyrum pernix. The gene was successfully expressed in Escherichia coli, and the product was purified to homogeneity and characterized. The expressed enzyme was highly thermostable LPDH having a molecular mass of about 88 kDa and a homodimeric structure. The preferred substrate for the enzyme was L-proline with 2,6-dichloroindophenol (DCIP) as the electron acceptor. However, the enzyme did not utilize ferricyanide as the electron acceptor, in contrast to all other known LPDHs. The electrochemical determination of L-proline at concentrations from 0 to 0.7 mM was achieved by using A. pernix LPDH. A phylogenetic analysis revealed A. pernix LPDH to be clustered with the third type of LPDHs, and to be clearly separated from the clusters of previously known heterooligomeric LPDHs.  相似文献   

13.
Numerous bacteria and mammalian cells harbor two enzymes, phosphopentomutase (PPM) and 2-deoxyribose 5-phosphate aldolase (DERA), involved in the interconversion between nucleosides and central carbon metabolism. In this study, we have examined the presence of this metabolic link in the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. A search of the genome sequence of this strain revealed the presence of a closely related orthologue (TK2104) of bacterial DERA genes while no orthologue related to previously characterized PPM genes could be detected. Expression, purification, and characterization of the TK2104 protein product revealed that this gene actually encoded a DERA, catalyzing the reaction through a class I aldolase mechanism. As PPM activity was detected in T. kodakaraensis cells, we partially purified the protein to examine its N-terminal amino acid sequence. The sequence corresponded to a gene (TK1777) similar to phosphomannomutases within COG1109 but not COG1015, which includes all previously identified PPMs. Heterologous gene expression of TK1777 and characterization of the purified recombinant protein clearly revealed that the gene indeed encoded a PPM. Both enzyme activities could be observed in T. kodakaraensis cells under glycolytic and gluconeogenic growth conditions, whereas the addition of ribose, 2-deoxyribose, and 2'-deoxynucleosides in the medium did not lead to a significant induction of these activities. Our results clearly indicate the presence of a metabolic link between pentoses and central carbon metabolism in T. kodakaraensis, providing an alternative route for pentose biosynthesis through the functions of DERA and a structurally novel PPM.  相似文献   

14.
2-Deoxyribose-5-phosphate aldolase (DERA, EC 4.1.2.4) catalyzes the reversible aldol reaction between acetaldehyde and D-glyceraldehyde-3-phosphate to generate D-2-deoxyribose-5-phosphate. It is unique among the aldolases as it catalyzes the reversible asymmetric aldol addition reaction of two aldehydes. In order to expand the substrate scope and stereoselectivity of DERA, structure-based substrate design as well as site-specific mutation has been investigated. Using the 1.05 A crystal structure of DERA in complex with its natural substrate as a guide, five site-directed mutants were designed in order to improve its activity with the unnatural nonphosphorylated substrate, D-2-deoxyribose. Of these, the S238D variant exhibited a 2.5-fold improvement over the wild-type enzyme in the retroaldol reaction of 2-deoxyribose. Interestingly, this S238D mutant enzyme was shown to accept 3-azidopropinaldehyde as a substrate in a sequential asymmetric aldol reaction to form a deoxy-azidoethyl pyranose, which is a precursor to the corresponding lactone and the cholesterol-lowering agent Lipitor. This azidoaldehyde is not a substrate for the wild-type enzyme. Another structure-based design of new nonphosphorylated substrates was focused on the aldol reaction with inversion in enantioselectivity using the wild type or the S238D variant as the catalyst and 2-methyl-substituted aldehydes as substrates. An example was demonstrated in the asymmetric synthesis of a deoxypyranose as a new effective synthon for the total synthesis of epothilones. In addition, to facilitate the discovery of new enzymatic reactions, the engineered E. coli strain SELECT (Deltaace, adhC, DE3) was developed to be used in the future for selection of DERA variants with novel nonphosphorylated acceptor specificity.  相似文献   

15.
Aldolases are emerging as powerful and cost efficient tools for the industrial synthesis of chiral molecules. They catalyze enantioselective carbon-carbon bond formations, generating up to two chiral centers under mild reaction conditions. Despite their versatility, narrow substrate ranges and enzyme inactivation under synthesis conditions represented major obstacles for large-scale applications of aldolases. In this study we applied directed evolution to optimize Escherichia coli 2-deoxy-D-ribose 5-phosphate aldolase (DERA) as biocatalyst for the industrial synthesis of (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranoside. This versatile chiral precursor for vastatin drugs like Lipitor (atorvastatin) is synthesized by DERA in a tandem-aldol reaction from chloroacetaldehyde and two acetaldehyde equivalents. However, E. coli DERA shows low affinity to chloroacetaldehyde and is rapidly inactivated at aldehyde concentrations useful for biocatalysis. Using high-throughput screenings for chloroacetaldehyde resistance and for higher productivity, several improved variants have been identified. By combination of the most beneficial mutations we obtained a tenfold improved variant compared to wild-type DERA with regard to (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranoside synthesis, under industrially relevant conditions.  相似文献   

16.
Arthrobacter simplex AKU 626 was found to synthesize 4-hydroxyisoleucine from acetaldehyde, alpha-ketobutyrate, and L-glutamate in the presence of Escherichia coli harboring the branched chain amino acid transaminase gene (ilvE) from E. coli K12 substrain MG1655. By using resting cells of A. simplex AKU 626 and E. coli BL21(DE3)/pET-15b-ilvE, 3.2 mM 4-hydroxyisoleucine was produced from 250 mM acetaldehyde, 75 mM alpha-ketobutyrate, and 100 mM L-glutamate with a molar yield to alpha-ketobutyrate of 4.3% in 50 mM Tris-HCl buffer (pH 7.5) containing 2 mM MnCl(2) x 4H(2)O at 28 degrees C for 2 h. An aldolase that catalyzes the aldol condensation of acetaldehyde and alpha-ketobutyrate was purified from A. simplex AKU 626. Mn(2+) and pyridoxal 5'-monophosphate were effective in stabilizing the enzyme. The native and subunit molecular masses of the purified aldolase were about 180 and 32 kDa respectively. The N-terminal amino acid sequence of the purified enzyme showed no significant homology to known aldolases.  相似文献   

17.
Molecules of muscle aldolase A exposed to acrylamide change their conformation via I1, T, I2, D intermediates [1] and undergo a slow irreversible chemical modification of thiol groups. There is no direct correlation between activity loss and thiol groups modification. In the native enzyme two classes of Trp residues of 1. 8 ns and 4.9 ns fluorescence lifetime have been found. Acrylamide (0. 2-0.5 M) increases lifetime of longer-lived component, yet the transfer of aldolase molecules even from higher (1.0 M) perturbant concentration to a buffer, allows regain original Trp fluorescence lifetime. I1, detected at about 0.2 M acrylamide, represents low populated tetramers of preserved enzyme activity. T, of maximum population at about 0.7-1.0 M acrylamide, consists of meta-stable tetramers of partial enzymatic activity. These molecules are able to exchange their subunits with aldolase C in opposition to the native molecules. At transition point for I2 appearance (1.8 M acrylamide), aldolase becomes highly unstable: part of molecules dissociate into subunits which in the absence of perturbant are able to reassociate into active tetramers, the remaining part undergoes irreversible denaturation and aggregation. Some expansion of aldolase tetramers takes place prior to dissociation. D, observed above 3.0 M acrylamide, consists of irreversibly denatured enzyme molecules.  相似文献   

18.
Glutamate dehydrogenase (GDH) was purified and characterized from an aerobic hyperthermophilic archaeon Aeropyrum pernix (A. pernix) K1. The enzyme has a hexameric structure with a native molecular mass of about 285 +/- 15 kDa. It was specific for NADP and thermostable (74% activity was remained after 5 h incubation at 100 degrees C). The activity of the enzyme increased in the presence of polar water-miscible organic solvents such as acetonitrile, methanol, and ethanol. The N-terminal sequence of GDH is Met-Gln-Pro-Thr-Asp-Pro-Leu-Glu-Glu-Ala. This sequence, except for the methionine, corresponds to amino acids 7-15 of the open reading frame (ORF) encoding the predicted GDH (ORF APE 1386). In the ORF nucleotide sequence, the codon TTG appears at the position of the methionine, suggesting that the leucine codon might be recognized as an initiation codon and translated to methionine in A. pernix GDH.  相似文献   

19.
2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号