首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of an (M,R) system with organizational invariance allows one to understand how a system may be able to maintain itself indefinitely if it is coupled to an external source of energy and materials. However, although this constitutes an important step towards understanding the difference between a living and a non-living system, it is not clear that an (M,R) system with organizational invariance is sufficient to define a living system. To take a further step towards defining what it means to be alive it is necessary to add to a simple (M,R) system some property that represents its identity, and which can be maintained and modified in subsequent generations.  相似文献   

2.
Mortierella alpina is a filamentous fungus commonly found in soil that is able to produce lipids in the form of triacylglycerols that account for up to 50% of its dry weight. Analysis of the M. alpina genome suggests that there is a phenylalanine-hydroxylating system for the catabolism of phenylalanine, which has never been found in fungi before. We characterized the phenylalanine-hydroxylating system in M. alpina to explore its role in phenylalanine metabolism and its relationship to lipid biosynthesis. Significant changes were found in the profile of fatty acids in M. alpina grown on medium containing an inhibitor of the phenylalanine-hydroxylating system compared to M. alpina grown on medium without inhibitor. Genes encoding enzymes involved in the phenylalanine-hydroxylating system (phenylalanine hydroxylase [PAH], pterin-4α-carbinolamine dehydratase, and dihydropteridine reductase) were expressed heterologously in Escherichia coli, and the resulting proteins were purified to homogeneity. Their enzymatic activity was investigated by high-performance liquid chromatography (HPLC) or visible (Vis)-UV spectroscopy. Two functional PAH enzymes were observed, encoded by distinct gene copies. A novel role for tetrahydrobiopterin in fungi as a cofactor for PAH, which is similar to its function in higher life forms, is suggested. This study establishes a novel scheme for the fungal degradation of an aromatic substance (phenylalanine) and suggests that the phenylalanine-hydroxylating system is functionally significant in lipid metabolism.  相似文献   

3.
A self-cloning system for Actinomadura verrucosospora, a producer of the angucyclic antibiotic pradimicin A (PRM A), has been developed. The system is based on reproducible and reliable protoplasting and regeneration conditions for A. verrucosospora and a novel plasmid vector that consists of a replicon from a newly found Actinomadura plasmid and a selectable marker cloned from the Actinomadura strain. The system has an efficiency of more than 105 CFU/microgram of DNA. Using this system, we have cloned and identified the polyketide synthase (PKS) genes essential for PRM A biosynthesis from A. verrucosospora. Nucleotide sequence analysis of the 3.5-kb SalI-SphI fragment showed that ketosynthase subunits (open reading frame 1 [ORF1] and ORF2) of the essential PKS genes have strong similarities (59 to 89%) to those for angucyclic antibiotic biosynthesis.  相似文献   

4.
5.
Fluorescence resonance energy transfer (FRET) is a distance-dependent interaction between the electronic excited states of two dye molecules. Here we introduce a novel FRET system for the detection of phosphopeptides using a phosphate-binding tag molecule, Zn2+-Phos-tag (1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-olato dizinc(II) complex) attached with a 7-amino-4-methylcoumarin-3-acetic acid (AMCA). Carboxyfluorescein (FAM)-labeled phospho- and nonphosphopeptides were prepared as the target molecules for the FRET system. A set of FAM (a fluorescent acceptor, λem 520 nm) and AMCA (a fluorescent donor, λex 345 nm) is frequently used for a FRET system. The AMCA-labeled Zn2+-Phos-tag specifically captured the FAM-labeled phosphopeptide to form a stable 1:1 complex, resulting in efficient FRET. After the FAM-labeled phosphopeptide was dephosphorylated with alkaline phosphatase, the FRET disappeared. Using this FRET system, we demonstrated the detection of the time-dependent dephosphorylation of the FAM-labeled protein-tyrosine phosphatase 1B substrate.  相似文献   

6.
The use of poorly treated water during hemodialysis may lead to contamination with nontuberculous mycobacteria (NTM). This study aimed to isolate and identify NTM species in the water of a Brazilian hemodialysis center. We collected 210 samples of water from the hydric system of the unit (post-osmosis system, hemodialysis rooms, reuse system, and hemodialysis equipment) and from the municipal supply network; we isolated the NTM by a classic microbiological technique and identified them by the PCR restriction enzyme pattern of the hsp65 gene (PRA). Fifty-one (24.3 %) of the collected samples tested positive for NTM; both the municipal supply network (2 samples, 3.2 %) and the hydric system of the hemodialysis center (49 samples, 96.1 %) contained NTM. We isolated and identified potentially pathogenic bacteria such as Mycobacterium lentiflavum (59.0 %) and M. kansasii (5.0 %), as well as rarely pathogenic bacteria like M. gordonae (24.0 %), M. gastri (8.0 %), and M. szulgai (4.0 %). The ability of NTM to cause diseases is well documented in the literature. Therefore, the identification of NTM in the water of a Brazilian hemodialysis center calls for more effective water disinfection procedures in this unit.  相似文献   

7.
The fluorescence transient of Chlorella pyrenoidosa, excited by saturating light absorbed mainly by system II, has a dip D between the peak I at 75 msec and the large peak P at 400 msec (the times depend on light intensity). This dip is observed in aerobic cells and in anaerobic cells where it is prominent. In anaerobic cells, the I-D decline is hastened almost equally by absorption of either 705 or 650 nm background light. In anaerobic cells, supplementary 700 and 710 nm light given during the transient slightly hastens and heightens P. Methyl viologen, an exogenous system I electron acceptor, eliminates P. Results suggest that system I action causes D, and that P is due to reduction of Q (fluorescence quencher) and intersystem intermediates caused by development of a block in oxidation of XH (X being the primary electron acceptor of light reaction I). Mathematical analysis suggests that if only two forms of Q participate beyond I, then system I action is required for D. If three forms participate, then the system Q → QH → Q′ (see text) may explain D. The Malkin model (14), in its present form, does not allow D.  相似文献   

8.
The accumulation of quaternary ammonium compounds in Lactobacillus plantarum is mediated via a single transport system with a high affinity for glycine betaine (apparent Km of 18 μM) and carnitine and a low affinity for proline (apparent Km of 950 μM) and other analogues. Mutants defective in the uptake of glycine betaine were generated by UV irradiation and selected on the basis of resistance to dehydroproline (DHP), a toxic proline analogue. Three independent DHP-resistant mutants showed reduced glycine betaine uptake rates and accumulation levels but behaved similarly to the wild type in terms of direct activation of uptake by high-osmolality conditions. Kinetic analysis of glycine betaine uptake and efflux in the wild-type and mutant cells is consistent with one uptake system for quaternary ammonium compounds in L. plantarum and a separate system(s) for their excretion. The mechanism of osmotic activation of the quaternary ammonium compound transport system (QacT) was studied. It was observed that the uptake rates were inhibited by the presence of internal substrate. Upon raising of the medium osmolality, the QacT system was rapidly activated (increase in maximal velocity) through a diminished inhibition by trans substrate as well as an effect that is independent of intracellular substrate. We also studied the effects of the cationic amphipath chlorpromazine, which inserts into the cytoplasmic membrane and thereby influences the uptake and efflux of glycine betaine. The results provide further evidence for the notion that the rapid efflux of glycine betaine upon osmotic downshock is mediated by a channel protein that is responding to membrane stretch or tension. The activation of QacT upon osmotic upshock seems to be brought about by a turgor-related parameter other than membrane stretch or tension.  相似文献   

9.
The full-length cDNA encoding a putative lipoprotein receptor (CasLpR) was isolated from the hemocytes of Callinectes sapidus using 5′ and 3′ RACEs. The open reading frame for CasLpR contains a precursor of putative CasLpR consisting of 1710 amino acid residues including 22 amino acid residues of the signal peptide (22 amino acids). Mature CasLpR (1688 amino acids with 5.6% of phosphorylation sites) has multiple, putative functional domains: five low-density lipoprotein receptor domains in the N-terminus, and a G-protein-coupled receptor proteolysis site domain and a 7 transmembrane receptor (secretin family) domain in the C-terminus. To date, there are no proteins with a similar domain structure in the GenBank. The expression pattern of CasLpR was exclusive in hemocytes among all tested tissues obtained from a juvenile female at intermolt stage: brain, eyestalk ganglia, pericardial organs, and thoracic ganglia complex (nervous system); hepatopancreas (digestive system); heart, artery and hemocytes (circulatory system); gill and antennal gland (excretory system), hypodermis; and Y-organ (endocrine organ). There was no CasLpR expression in the ovary of an adult female. A putative function of CasLpR was examined after challenges of lipopolysaccharides (LPS) and lipoteichoic acid (LTA) in vivo using qRT-PCR assays. Animals at 24 h after injection of LPS or LTA up-regulated the expression of CasLpR in hemocytes by ∼3.5 and 1.4 folds, respectively, compared to the controls that received saline injection. LPS challenge also caused the greatest increment (∼55 folds) of heat shock protein 90 (Hsp90) expression in these samples. These data indicate that putative CasLpR and CasHsp90 may be involved in the defense system or the stress response of C. sapidus.  相似文献   

10.
The lack of a versatile system to control gene expression in Helicobacter pylori has hampered efforts to study H. pylori physiology and pathogenesis. To overcome these limitations, we evaluated the utility of an inducible system based on the well-characterized Tet repressor (TetR) and Tet operator (tetO). As validation of this system, we introduced three copies of tetO into the promoter region upstream of the cagUT operon (encoding two virulence factors required for function of the H. pylori Cag type IV secretion system) and expressed tetR by introducing a codon-optimized gene into the chromosomal ureA locus. Introduction of the tetO copies upstream of cagUT did not disrupt promoter activity, as determined by immunoblotting for CagT. The subsequent introduction of tetR, however, did repress CagT synthesis. Production of CagT was restored when strains were cultured in the presence of the inducer, anhydrotetracycline. To demonstrate one potential application of this new tool, we analyzed the function of the Cag type IV secretion system. When the modified H. pylori strains were co-cultured with AGS cells, activity of the Cag type IV secretion system was dependent on the presence of anhydrotetracycline as evidenced by inducer-dependent induction of IL-8 secretion, CagA translocation, and appearance of type IV secretion system pili at the bacteria–host interface. These studies demonstrate the effectiveness of the tetRtetO system to control gene expression in H. pylori and provide an improved system for studying H. pylori physiology and pathogenesis.  相似文献   

11.
Using a reconstituted glycolytic enzyme system from muscle tissue, it was shown that phosphorylase activity was regulated by some process to provide only the required amount of glucose 1-phosphate, regardless of the percentage of phosphorylase in the a form. By carrying out phosphorylase a assays at high enzyme concentration (2 mg ml?1), the same concentration as in the reconstituted system and comparable with in vivo, it was shown that (a) the Km for phosphate was higher and V lower than at low enzyme concentration (2 μg ml?1), (b) the presence of other glycolytic enzymes at 40 mg ml?1 suppressed the activity a further threefold, and (c) phosphocreatine inhibited the enzyme. Taken together, these three effects were sufficient to explain the relative lack of activity of phosphorylase a in the reconstituted system. The inhibition by phosphocreatine is seen as a mode of feedback control on phosphorylase activity in vivo.  相似文献   

12.
It is well known that genotypic differences can account for the subject-specific responses to opiate administration. In this regard, the basal activity of the endogenous system (either at the receptor or ligand level) can modulate the effects of exogenous agonists as morphine and vice versa. The μ opioid receptor from zebrafish, dre-oprm1, binds endogenous peptides and morphine with similar affinities. Morphine administration during development altered the expression of the endogenous opioid propeptides proenkephalins and proopiomelanocortin. Treatment with opioid peptides (Met-enkephalin [Met-ENK], Met-enkephalin-Gly-Tyr [MEGY] and β-endorphin [β-END]) modulated dre-oprm1 expression during development. Knocking down the dre-oprm1 gene significantly modified the mRNA expression of the penk and pomc genes, thus indicating that oprm1 is involved in shaping penk and pomc expression. In addition, the absence of a functional oprm1 clearly disrupted the embryonic development, since proliferation was disorganized in the central nervous system of oprm1-morphant embryos: mitotic cells were found widespread through the optic tectum and were not restricted to the proliferative areas of the mid- and hindbrain. Transferase-mediated dUTP nick-end labeling (TUNEL) staining revealed that the number of apoptotic cells in the central nervous system (CNS) of morphants was clearly increased at 24-h postfertilization. These findings clarify the role of the endogenous opioid system in CNS development. Our results will also help unravel the complex feedback loops that modulate opioid activity and that may be involved in establishing a coordinated expression of both receptors and endogenous ligands. Further knowledge of the complex interactions between the opioid system and analgesic drugs will provide insights that may be relevant for analgesic therapy.  相似文献   

13.
Regulation of the L-arabinose transport operons in Escherichia coli   总被引:9,自引:0,他引:9  
l-Arabinose is transported into Escherichia coli via two independent transport systems, a system possessing relatively low affinity for arabinose, the araE system, and a system of higher affinity for arabinose, the araFG system. In the work reported here we demonstrate that insertion of the Mu-lac bacteriophage isolated by Casadaban &; Cohen (1979) permits a reliable measurement of the expression of these two operons. Using appropriate Mu-lac insertion strains we found that both of the arabinose transport operons can be induced approximately 150-fold by the presence of arabinose, and that induction of both transport operons requires CRP (cyclic AMP receptor protein), but that their catabolite sensitivities differ from one another. In addition, we show that the araC+ allele is dominant to the Cc allele in the control of the transport operons, just as is found in the araBAD operon.  相似文献   

14.
Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines.  相似文献   

15.
Measurements of time-resolved fluorescence quenching have been performed in the binary lauroyllysophosphatidylcholine (LaLPC)/water system. The aggregation numbers, N, are determined for the micellar solution phase (Nmicelle ≈ 80) and the cubic liquid crystalline I1 phase (Ncub ≈ 90) at 298-303 K. When a quencher is present, the fluorescence decays for the hexagonal phase of the LaLPC/water system and for the bicontinuous cubic phase of monooleoylglycerol/water system are nonexponential, as expected for phase structures having long-range continuous apolar regions. Nuclear magnetic resonance (NMR) measurements of the lipid translational diffusion conclusively show that the cubic I1 phase consists of closed micelles. NMR spectra of 31P obtained at 202.4 MHz of this cubic phase exhibit a characteristic line shape, which is compatible with a phase structure containing short nonspherical micelles. A comparison between electron spin resonance (ESR) spin-label spectra recorded for a micellar solution and the cubic phases of the LaLPC and monooleoylglycerol systems are also shown to support a structure of closed micelles in the cubic I1 phase of the lysolecithin system.  相似文献   

16.
Limonium bicolor, a typical recretohalophyte, has a specialized salt-secreting structure in the epidermis called the salt gland and plays a significant role in improving saline land. Understanding the molecular mechanisms of salt secretion and salt gland development requires an efficient L. bicolor transformation system, which is described in this report. Leaf explants were incubated with Agrobacterium tumefaciens strain EHA105 harboring the plasmid pTCK303 containing the β-glucuronidase gene (GUS) as the transgene reporter and the hygromycin B resistance gene as a selectable marker. Up to 96.9% of leaves were induced to regenerate shoots on an Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzyladenine and 1.1 μM α-naphthaleneacetic acid; roots were induced on the MS medium containing 2.5 μM indole-3-butyric acid. This tissue culture system was suitable for Agrobacterium-mediated transformation of L. bicolor. Pre-cultivated explants (2 d old) were incubated with Agrobacterium (0.6–0.7 at OD600) in a shaking culture for 20 min; the explants and bacterium were co-cultivated for 4 d in the dark before the explants were transferred to a selection medium containing 8 mg/L hygromycin B and 600 mg/L piperacillin sodium (added to prevent continued Agrobacterium growth). Histochemical assays and PCR to detect the GUS gene showed that transformation frequency was 4.43%. Quantitative PCR and Northern blotting further verified the integration and presence of the GUS gene in L. bicolor. This is the first report of an Agrobacterium-based transformation system for L. bicolor. The system will facilitate a research on the identity and function of genes involved in salt gland development and salt secretion.  相似文献   

17.
A stirred tank bioreactor (STB) integrated with an expanded bed adsorption (EBA) system containing anion-exchange resin (Diaion WA30) was developed for in situ removal of acetate to increase the production of α-interferon-2b (α-PrIFN-2b) by Escherichia coli (E. coli). Although the total acetate (9.79 g/L) secreted by E. coli in the integrated STB/EBA system was higher than that in a bioreactor with dispersed resin or a conventional batch bioreactor, cell growth (14.97 g/L) and α-PrIFN-2b production (867.4 μg/L) were significantly improved owing to the high efficiency of acetate removal from the culture. The production of α-PrIFN-2b in the integrated STB/EBA system was improved by 3-fold and 1.4-fold over that obtained in a conventional batch bioreactor and a bioreactor containing dispersed resins, respectively.  相似文献   

18.
On the Components of Segregation Distortion in DROSOPHILA MELANOGASTER   总被引:14,自引:13,他引:1       下载免费PDF全文
Barry Ganetzky 《Genetics》1977,86(2):321-355
The segregation distorter (SD) complex is a naturally occurring meiotic drive system with the property that males heterozygous for an SD-bearing chromosome 2 and an SD+-bearing homolog transmit the SD-bearing chromosome almost exclusively. This distorted segregation is the consequence of an induced dysfunction of those sperm that receive the SD+ homolog. From previous studies, two loci have been implicated in this phenomenon: the Sd locus which is required to produce distortion, and the Responder (Rsp) locus that is the site at which Sd acts. There are two allelic alternatives of Rsp—sensitive (Rspsens) and insensitive (Rspins); a chromosome carrying Rspins is not distorted by SD. In the present study, the function and location of each of these elements was examined by a genetic and cytological characterization of X-ray-induced mutations at each locus. The results indicate the following: (1) the Rsp locus is located in the proximal heterochromatin of 2R; (2) a deletion for the Rsp locus renders a chromosome insensitive to distortion; (3) the Sd locus is located to the left of pr (2-54.5), in the region from 37D2-D7 to 38A6-B2 of the salivary chromosome map; (4) an SD chromosome deleted for Sd loses its ability to distort; (5) there is another important component of the SD system, E(SD), in or near the proximal heterochromatin of 2L, that behaves as a strong enhancer of distortion. The results of these studies allow a reinterpretation of results from earlier analyses of the SD system and serve to limit the possible mechanisms to account for segregation distortion.  相似文献   

19.
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.  相似文献   

20.
The innate immune system is of vital importance for protection against infectious pathogens. Inflammasome mediated caspase-1 activation and subsequent release of pro-inflammatory cytokines like IL-1β and IL-18 is an important arm of the innate immune system. Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium, SL1344) is an enteropathogenic bacterium causing diarrheal diseases. Different reports have shown that in macrophages, S. Typhimurium may activate caspase-1 by at least three different types of stimuli: flagellin, the type III secretion system 1 (T1) and the T1 effector protein SopE. However, the relative importance and interdependence of the different factors in caspase-1 activation is still a matter of debate. Here, we have analyzed their relative contributions to caspase-1 activation in LPS-pretreated RAW264.7 macrophages. Using flagellar mutants (fliGHI, flgK) and centrifugation to mediate pathogen-host cell contact, we show that flagellins account for a small part of the caspase-1 activation in RAW264.7 cells. In addition, functional flagella are of key importance for motility and host cell attachment which is a prerequisite for mediating caspase-1 activation via these three stimuli. Using site directed mutants lacking several T1 effector proteins and flagellin expression, we found that SopE elicits caspase-1 activation even when flagellins are absent. In contrast, disruption of essential genes of the T1 protein injection system (invG, sipB) completely abolished caspase-1 activation. However, a robust level of caspase-1 activation is retained by the T1 system (or unidentified T1 effectors) in the absence of flagellin and SopE. T1-mediated inflammasome activation is in line with recent work by others and suggests that the T1 system itself may represent the basic caspase-1 activating stimulus in RAW264.7 macrophages which is further enhanced independently by SopE and/or flagellin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号