首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic force microscopy (AFM) has developed into a powerful tool in membrane biology. AFM features an outstanding signal-to-noise ratio that allows substructures on individual macromolecules to be visualized. Most recently, AFM topographs have shown the supramolecular assembly of the bacterial photosynthetic complexes in native membranes. Here, we have determined the translational and rotational degrees of freedom of the complexes in AFM images of multi-protein assemblies, in order to build realistic atomic models of supramolecular assemblies by docking high-resolution structures into the topographs. Membrane protein assemblies of megadalton size comprising several hundreds of polypeptide chains and pigments were built with Angstrom precision.  相似文献   

2.
Bacterial surface layers (S-layers) are extracellular protein networks that act as molecular sieves and protect a large variety of archaea and bacteria from hostile environments. Atomic force microscopy (AFM) was used to asses the S-layer of Coryne-bacterium glutamicum formed of PS2 proteins that assemble into hexameric complexes within a hexagonal lattice. Native and trypsin-treated S-layers were studied. Using the AFM stylus as a nanodissector, native arrays that adsorbed to mica as double layers were separated. All surfaces of native and protease-digested S-layers were imaged at better than 1 nm lateral resolution. Difference maps of the topographies of native and proteolysed samples revealed the location of the cleaved C-terminal fragment and the sidedness of the S-layer. Because the corrugation depths determined from images of both sides span the total thickness of the S-layer, a three-dimensional reconstruction of the S-layer could be calculated. Lattice defects visualized at 1 nm resolution revealed the molecular boundaries of PS2 proteins. The combination of AFM imaging and single molecule force spectroscopy allowed the mechanical properties of the Corynebacterium glutamicum S-layer to be examined. The results provide a basis for understanding the amazing stability of this protective bacterial surface coat.  相似文献   

3.
The architecture of the entire photosynthetic membrane network determines, at the supramolecular level, the physiological roles of the photosynthetic protein complexes involved. So far, a precise picture of the native configuration of red algal thylakoids is still lacking. In this work, we investigated the supramolecular architectures of phycobilisomes (PBsomes) and native thylakoid membranes from the unicellular red alga Porphyridium cruentum using atomic force microscopy (AFM) and transmission electron microscopy. The topography of single PBsomes was characterized by AFM imaging on both isolated and membrane-combined PBsomes complexes. The native organization of thylakoid membranes presented variable arrangements of PBsomes on the membrane surface. It indicates that different light illuminations during growth allow diverse distribution of PBsomes upon the isolated photosynthetic membranes from P. cruentum, random arrangement or rather ordered arrays, to be observed. Furthermore, the distributions of PBsomes on the membrane surfaces are mostly crowded. This is the first investigation using AFM to visualize the native architecture of PBsomes and their crowding distribution on the thylakoid membrane from P. cruentum. Various distribution patterns of PBsomes under different light conditions indicate the photoadaptation of thylakoid membranes, probably promoting the energy-harvesting efficiency. These results provide important clues on the supramolecular architecture of red algal PBsomes and the diverse organizations of thylakoid membranes in vivo.  相似文献   

4.
Lipopolysaccharide (LPS) on gram‐negative bacterial outer membranes is the first target for antimicrobial agents, due to their spatial proximity to outer environments of microorganisms. To develop antibacterial compounds with high specificity for LPS binding, the understanding of the molecular nature and their mode of recognition is of key importance. In this study, atomic force microscopy (AFM) and single molecular force spectroscopy were used to characterize the effects of antibiotic polymyxin B (PMB) to the bacterial membrane at the nanoscale. Isolated LPS layer and the intact bacterial membrane were examined with respect to morphological changes at different concentrations of PMB. Our results revealed that 3 hours of 10 μg/mL of PMB exposure caused the highest roughness changes on intact bacterial surfaces, arising from the direct binding of PMB to LPS on the bacterial membrane. Single molecular force spectroscopy was used to probe specific interaction forces between the isolated LPS layer and PMB coupled to the AFM tip. A short range interaction regime mediated by electrostatic forces was visible. Unbinding forces between isolated LPS and PMB were about 30 pN at a retraction velocity of 500 nm/s. We further investigated the effects of the polycationic peptide PMB on bacterial outer membranes and monitored its influences on the deterioration of the bacterial membrane structure. Polymyxin B binding led to rougher appearances and wrinkles on the outer membranes surface, which may finally lead to lethal membrane damage of bacteria. Our studies indicate the potential of AFM for applications in pathogen recognition and nano‐resolution approaches in microbiology.  相似文献   

5.
G-protein-coupled receptors (GPCRs) participate in virtually all physiological processes. They constitute the largest and most structurally conserved family of signaling molecules. Several class C GPCRs have been shown to exist as dimers in their active form and growing evidence indicates that many, if not all, class A receptors also form dimers and/or higher-order oligomers. High-resolution crystal structures are available only for the detergent-solubilized light receptor rhodopsin (Rho), the archetypal class A GPCR. In addition, Rho is the only GPCR for which the presumed higher-order oligomeric state has been demonstrated, by imaging native disk membranes using atomic force microscopy (AFM). Based on these data and the X-ray structure, an atomic model of Rho dimers has been proposed, a model that is currently scrutinized in various ways. AFM has also been used to measure the forces required to unfold single Rho molecules, thereby revealing which residues are responsible for Rho's stability. Recent functional analyses of fractions from solubilized disk membranes revealed that higher-order Rho oligomers are the most active species. These and other results have enhanced our understanding of GPCR structure and function.  相似文献   

6.
The photobleaching herbicide, acifluorfen-methyl (AFM), has been reported to be an inhibitor of the heme and chlorophyll biosynthetic enzyme protoporphyrinogen oxidase (Protox) in several plant species. However, AFM had no effect on the levels of Protox activity measured in a mitochondrial fraction from soybean roots. In contrast, AFM inhibited Protox activity in etioplasts from barley leaves and in mitochondria from barley roots, but the extent of inhibition varied depending upon the assay conditions and was maximal only in the presence of 5 mM dithiothreitol (DTT). AFM inhibition was enhanced by preincubation of barley organelle extract in the presence of DTT. Preincubation of barley extract with DTT and AFM together (but not with AFM alone) caused extensive enzyme inhibition which was not reversible by dialysis. These findings have implications for the mechanism of AFM action and for the differential effect of these herbicides on crop and weed species. AFM had no effect on the Protox activity of membranes from free-living bacterial cell of Bradyrhizobium japonicum or Escherichia coli, or on the high levels of Protox activity associated with the plant-derived membrane surrounding the symbiotic bacteria within the soybean root nodule.  相似文献   

7.
Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.  相似文献   

8.
Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes.  相似文献   

9.
Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near‐native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4‐M23) was expressed in the X. laevis oocytes following their injection with AQP4‐M23 cRNA. AQP4‐M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4‐M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over‐expressed AQP4‐M23, the membranes from AQP4‐M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher‐order arrays of AQP4‐M23. In addition, but only infrequently, AQP4‐M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Muller DJ 《Biochemistry》2008,47(31):7986-7998
Cellular membranes are vital for life. They confine cells and cytosolic compartments and are involved in virtually every cellular process. Cellular membranes form cellular contacts and focal adhesions, anchor the cytoskeleton, generate energy gradients, transform energy, transduce signals, move cells, and actively form compartments to assemble different membrane proteins into functional entities. But how do cellular membranes perform these tasks? What do the machineries of cellular membranes look like, and how are they controlled and guided? Atomic force microscopy (AFM) allows the observation of biological surfaces in their native environment at a signal-to-noise ratio superior to that of any optical microscopic technique. With a spatial resolution approaching approximately 1 nm, AFM can identify the supramolecular assemblies, characteristic structure, and functional conformation of native membrane proteins. In recent years, AFM has evolved from imaging applications to a multifunctional "laboratory on a tip" that allows observation and manipulation of the machineries of cellular membranes. In the force spectroscopy mode, AFM detects interactions between two single cells at molecular resolution. Force spectroscopy can also be used to probe the local elasticity, chemical groups, and receptor sites of live cells. Other applications locate molecular interactions driving membrane protein folding, assembly, and their switching between functional states. It is also possible to examine the energy landscape of biomolecular reactions, as well as reaction pathways, associated lifetimes, and free energy. In this review, we provide a flavor of the fascinating opportunities offered by the use of AFM as a nanobiotechnological tool in modern membrane biology.  相似文献   

11.
Membrane proteins perform many essential cellular functions. Over the last years, substantial advances have been made in our understanding of the structure and function of isolated membrane proteins. However, like soluble proteins, many membrane proteins assemble into supramolecular complexes that perform specific functions in specialized membrane domains. Since supramolecular complexes of membrane proteins are difficult to study by conventional approaches, little is known about their composition, organization and assembly. The high signal-to-noise ratio of the images that can be obtained with an atomic force microscope (AFM) makes this instrument a powerful tool to image membrane protein complexes within native membranes. Recently, we have reported high-resolution topographs of junctional microdomains in native eye lens membranes containing two-dimensional (2D) arrays of aquaporin-0 (AQP0) surrounded by connexons. While both proteins are involved in cell adhesion, AQP0 is a specific water channel whereas connexons form cell–cell communication channels with broad substrate specificity. Here, we have performed a detailed analysis of the supramolecular organization of AQP0 tetramers and connexon hexamers in junctional microdomains in the native lens membrane. We present first structural models of these junctional microdomains, which we generated by docking atomic models of AQP0 and connexons into the AFM topographs. The AQP0 2D arrays in the native membrane show the same molecular packing of tetramers seen in highly ordered double-layered 2D crystals obtained through reconstitution of purified AQP0. In contrast, the connexons that surround the AQP0 arrays are only loosely packed. Based on our AFM observations, we propose a mechanism that may explain the supramolecular organization of AQP0 and connexons in junctional domains in native lens membranes.  相似文献   

12.
There is substantial evidence which implicates alpha-synuclein and its ability to aggregate and bind vesicle membranes as critical factors in the development of Parkinson's disease. In order to investigate the interaction between alpha-synuclein wild type (Wt) and its familial mutants, A53T and A30P with lipid membranes, we developed a novel lipid binding assay using surface enhanced laser desorption/ionisation-time of flight-mass spectrometry (SELDI-TOF MS). Wt and A53T exhibited similar lipid binding profiles; monomeric species and dimers bound with high relative affinity to the lipid surface, the latter of which exhibited preferential binding. Wt and A53T trimers and tetramers were also detected on the lipid surface. A30P exhibited a unique lipid binding profile; monomeric A30P bound with a low relative affinity, however, the dimeric species of A30P exhibited a higher binding ability. Larger order A30P oligomers were not detected on the lipid surface. Tapping mode atomic force microscopy (AFM) imaging was conducted to further examine the alpha-synuclein-lipid interaction. AFM analysis revealed Wt and its familial mutants can penetrate lipid membranes or disrupt the lipid and bind the hydrophobic alkyl self-assembled monolayer (SAM) used to form the lipid layer. The profile of these studied proteins revealed the presence of 'small features' consistent with the presence of monomeric and dimeric forms of the protein. These data collectively indicate that the dimeric species of Wt and its mutants can bind and cause membrane perturbations.  相似文献   

13.
Antibacterial peptides have been isolated from a wide range of species. Some of these peptides act on microbial membranes, disrupting their barrier function. With the increasing development of antibiotic resistance by bacteria, these antibacterial peptides, which have a new mode of action, have attracted interest as antibacterial agents. To date, however, few effective high-throughput approaches have been developed for designing and screening peptides that act selectively on microbial membranes. In vitro display techniques are powerful tools to select biologically functional peptides from peptide libraries. Here, we used the ribosome display system to form peptide-ribosome-mRNA complexes in vitro from nucleotides encoding a peptide library, as well as immobilized model membranes, to select specific sequences that recognize bacterial membranes. This combination of ribosome display and immobilized model membranes was effective as an in vitro high-throughput screening system and enabled us to identify motif sequences (ALR, KVL) that selectively recognized the bacterial membrane. Owing to host toxicity, it was not possible to enrich any sequence expected to show antimicrobial activity using another in vitro system, e.g. phage display. The synthetic peptides designed from these enriched motifs acted selectively on the bacterial model membrane and showed antibacterial activity. Moreover, the motif sequence conferred selectivity onto native peptides lacking selectivity, and decreased mammalian cell toxicity of native peptides without decreasing their antibacterial activity.  相似文献   

14.
The higher-order structure of G protein-coupled receptors (GPCRs) in membranes may involve dimerization and formation of even larger oligomeric complexes. Here, we have investigated the organization of the prototypical GPCR rhodopsin in its native membrane by electron and atomic force microscopy (AFM). Disc membranes from mice were isolated and observed by AFM at room temperature. In all experimental conditions, rhodopsin forms structural dimers organized in paracrystalline arrays. A semi-empirical molecular model for the rhodopsin paracrystal is presented validating our previously reported results. Finally, we compare our model with other currently available models describing the supramolecular structure of GPCRs in the membrane.  相似文献   

15.
Observing single biomolecules at work with the atomic force microscope   总被引:28,自引:0,他引:28  
Progress in the application of the atomic force microscope (AFM) to imaging and manipulating biomolecules is the result of improved instrumentation, sample preparation methods and image acquisition conditions. Biological membranes can be imaged in their native state at a lateral resolution of 0.5-1 nm and a vertical resolution of 0. 1-0.2 nm. Conformational changes that are related to functions can be resolved to a similar resolution, complementing atomic structure data acquired by other methods. The unique capability of the AFM to directly observe single proteins in their native environments provides insights into the interactions of proteins that form functional assemblies. In addition, single molecule force spectroscopy combined with single molecule imaging provides unprecedented possibilities for analyzing intramolecular and intermolecular forces. This review discusses recent examples that illustrate the power of AFM.  相似文献   

16.
P.A.GUNNING, A.R.KIRBY, M.L.PARKER, A.P.GUNNING AND V.J.MORRIS. 1996. Both Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) have been used to visualize the morphology of Pseudomonas putida bacterial colonies isolated from model oil-in-water emulsions. A new method has been developed for growing flat homogeneous bacterial biofilms at planar oil-water interfaces. A marked increase in resolution has been achieved when these flat bacterial biofilms are imaged by both SEM and AFM methods. On flat bacterial biofilms AFM offers superior resolution with minimal sample preparation. High resolution DC contact mode AFM studies of the bacterial surfaces have revealed surface features comparable in size to large proteins. AC non-contact AFM methods have been used to image bacterial flagella trapped in the biofilm.  相似文献   

17.
Photosynthesis both in the past and present provides the vast majority of the energy used on the planet. The purple photosynthetic bacteria are a group of organisms that are able to perform photosynthesis using a particularly simple system that has been much studied. The main molecular constituents required for photosynthesis in these organisms are a small number of transmembrane pigment–protein complexes. These are able to function together with a high quantum efficiency (about 95%) to convert light energy into chemical potential energy. While the structure of the various proteins have been solved for several years, direct studies of the supramolecular assembly of these complexes in native membranes needed maturity of the atomic force microscope (AFM). Here, we review the novel findings and the direct conclusions that could be drawn from high-resolution AFM analysis of photosynthetic membranes. These conclusions rely on the possibility that the AFM brings of obtaining molecular resolution images of large membrane areas and thereby bridging the resolution gap between atomic structures and cellular ultrastructure.  相似文献   

18.
The structural analysis of the individual components of the photosynthetic apparatus of Rhodopseudomonas palustris, or those of related species, is almost complete. To shed light on the assembly and organization of this machinery, we have studied native membranes of Rps.palustris grown under different light conditions using atomic force microscopy (AFM). The organization of the complexes in the membranes is different from any previously observed: with areas of crystalline core-complexes, crystalline peripheral antennae, mixed domains, and apparently pure lipid membranes devoid of protein. Examination of antennae structure shows that chromatic adaptation is associated with modifications in absorption and size of the peripheral light harvesting complexes (LH2) as light intensity is reduced. The core-complex is observed to contain a reaction centre (RC) surrounded by an elliptical assembly of 15 LH1 subunits and a "gap" attributed to the W-subunit. The localization of the W-subunit is not restricted to the periapsis of the core-complex but randomly located with respect to the RC imposed axis.  相似文献   

19.
There is substantial evidence which implicates α-synuclein and its ability to aggregate and bind vesicle membranes as critical factors in the development of Parkinson's disease. In order to investigate the interaction between α-synuclein wild type (Wt) and its familial mutants, A53T and A30P with lipid membranes, we developed a novel lipid binding assay using surface enhanced laser desorption/ionisation-time of flight-mass spectrometry (SELDI-TOF MS). Wt and A53T exhibited similar lipid binding profiles; monomeric species and dimers bound with high relative affinity to the lipid surface, the latter of which exhibited preferential binding. Wt and A53T trimers and tetramers were also detected on the lipid surface. A30P exhibited a unique lipid binding profile; monomeric A30P bound with a low relative affinity, however, the dimeric species of A30P exhibited a higher binding ability. Larger order A30P oligomers were not detected on the lipid surface. Tapping mode atomic force microscopy (AFM) imaging was conducted to further examine the α-synuclein-lipid interaction. AFM analysis revealed Wt and its familial mutants can penetrate lipid membranes or disrupt the lipid and bind the hydrophobic alkyl self-assembled monolayer (SAM) used to form the lipid layer. The profile of these studied proteins revealed the presence of ‘small features’ consistent with the presence of monomeric and dimeric forms of the protein. These data collectively indicate that the dimeric species of Wt and its mutants can bind and cause membrane perturbations.  相似文献   

20.
To better understand biofouling of seawater reverse osmosis (SWRO) membranes, bacterial diversity was characterized in the intake water, in subsequently pretreated water and on SWRO membranes from a full-scale desalination plant (FSDP) during a 9 month period. 16S rRNA gene fingerprinting and sequencing revealed that bacterial communities in the water samples and on the SWRO membranes were very different. For the different sampling dates, the bacterial diversity of the active and the total bacterial fractions of the water samples remained relatively stable over the sampling period whereas the bacterial community structure on the four SWRO membrane samples was significantly different. The richness and evenness of the SWRO membrane bacterial communities increased with usage time with an increase in the Shannon diversity index of 2.2 to 3.7. In the oldest SWRO membrane (330 days), no single operational taxonomic unit (OTU) dominated and the majority of the OTUs fell into the Alphaproteobacteria or the Planctomycetes. In striking contrast, a Betaproteobacteria OTU affiliated to the genus Ideonella was dominant and exclusively found in the membrane used for the shortest time (10 days). This suggests that bacteria belonging to this genus could be one of the primary colonizers of the SWRO membrane. Knowledge of the dominant bacterial species on SWRO membranes and their dynamics should help guide culture studies for physiological characterization of biofilm forming species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号