首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide (NO) is generated intracellularly from L-arginine by the action of the enzyme nitric oxide synthase (NOS). The present investigation demonstrates immunoreactivity against NOS and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in nerve cells and fibers of the reproductive system of the female mouse. The density of nerve fibers staining for NOS varied among different genital organs. The ovary and Fallopian tube were devoid of NOS-positive nerves. The uterine horns received sparse innervation by NOS-containing nerve fibers. The most abundant NOergic innervation was found in the uterine cervix and vagina, where the nerve fibers ran parallel to the smooth muscle bundles and beneath the epithelium; they also accompanied intramural blood vessels. The vaginal muscular wall contained single or groups of NOS-reactive nerve cells. Clusters of NOS-containing neurons were located in Frankenhäuser's ganglion at the cervico-vaginal junction. NO may therefore act as a transmitter in the nervous control of the female reproductive tract.  相似文献   

2.
Quantitative nitric oxide production by rat, bovine and porcine macrophages   总被引:1,自引:0,他引:1  
The aim of this work was to compare in vitro nitric oxide (NO) production by rat, bovine and porcine macrophages. NO production was induced by lipopolysaccharide (LPS) or by phorbol 12-myristate 13-acetate (PMA) with ionomycin or recombinant interferon gamma (rIFN-γ) and was assessed by Griess reaction. NO synthase type II (NOS II) expression was quantified by immunocytochemistry, Western blot and real-time polymerase chain reaction (RT-PCR). There were differences in NO production by pulmonary alveolar macrophages (PAM) in all species tested. The largest amounts of NO were produced by rat PAM. Less NO was produced by bovine PAM. Moreover, PAM in rats and cows differed in their abilities to respond to various stimulators. Neither porcine PAM nor Kupffer cells produced NO. Stimulation of porcine PAM with alternative concentrations of LPS did not lead to inducing NO production. Stimulation of porcine PAM with rIFN-γ together with LPS led to a significant increase in the expression of NOS II mRNA, albeit without detectable NO production or NOS II expression on the protein level.  相似文献   

3.
4.
Nitric oxide (NO), a highly reactive free radical is involved in vasodilation, neurotransmission, hormone secretion, and reproduction. Since all known nitric oxide synthase (NOS) isoforms possess NADPH-diaphorase (NADPH-d) activity, NADPH-d histochemistry was used as a commonly accepted procedure for NOS identification. The aim of our study was to determine the cellular localization of NADPH-d, eNOS, and iNOS in the porcine uterus and the correlation between NADPH-d and NOS activity in the early, middle, late luteal, and follicular phase of the estrous cycle. Light-microscopic observations of the sections revealed the differential expression of the NADPH-d in the analyzed stages of the estrous cycle. The most intense staining was observed in the luminal epithelium in the late luteal phase and in some groups of the endometrial glands in all studied stages. Positive reaction was also found in the endothelial cells of blood vessels and in the myometrium itself. Immunostaining for eNOS was observed in the luminal and glandular epithelium in all studied stages, but no clear fluctuations were observed. The endothelium of both endometrial and myometrial blood vessels displayed pronounced eNOS immunostaining. Strong iNOS staining was observed in the luminal epithelium in the late luteal and follicular phase and in selected groups of endometrial glands. Thus, only NADPH-d and iNOS undergo cyclic changes in the studied stages of the estrous cycle. The differential expression of NADPH-d/NOS in the porcine uterine horn during the estrous cycle suggests a role for NO in modulating uterine function.  相似文献   

5.
The distributions of neuronal nitric oxide synthase immunoreactivity (NOS-IR) and NADPH-diaphorase (NADPH-d) activity were compared in the cat spinal cord. NOS-IR in neurons around the central canal, in superficial laminae (I and II) of the dorsal horn, in the dorsal commissure, and in fibers in the superficial dorsal horn was observed at all levels of the spinal cord. In these regions, NOS-IR paralleled NADPH-d activity. The sympathetic autonomic nucleus in the rostral lumbar and thoracic segments exhibited prominent NOS-IR and NADPH-d activity, whereas the parasympathetic nucleus in the sacral segments did not exhibit NOS-IR or NADPH-d activity. Within the region of the sympathetic autonomic nucleus, fewer NOS-IR cells were identified compared with NADPH-d cells. The most prominent NADPH-d activity in the sacral segments occurred in fibers within and extending from Lissauer's tract in laminae I and V along the lateral edge of the dorsal horn to the region of the sacral parasympathetic nucleus. These afferent projections did not exhibit NOS-IR; however, NOS-IR and NADPH-d activity were demonstrated in dorsal root ganglion cells (L7-S2). The results of this study demonstrate that NADPH-d activity is not always a specific histochemical marker for NO-containing neural structures.  相似文献   

6.
The distribution of neurons containing NADPH-diaphorase (NADPH-d) activity and nitric oxide synthase-like immunoreactivity (NOS-LI) in the canine pyloric and ileocolonic sphincters was studied. Cells within the myenteric and submucosal ganglia were positive for NADPH-d. These cells generally had the morphology of Dogiel type-I enteric neurons, however, there was some diversity in the morphology of NADPH-d-positive neurons in the myenteric plexus of the pylorus. Intramuscular ganglia were observed in both sphincters, and NADPH-d was found in a sub-population of neurons within these ganglia. Dual staining with an antiserum raised against nitric oxide synthase (NOS) demonstrated that almost all cells with NOS-LI were also NADPH-d positive. Varicose fibers within ganglia and within the circular and longitudinal muscle layers also possed NOS-LI and NADPH-d activity. Dual staining with anti-VIP antibodies showed that some of the NADPH-d-positive cells in the myenteric and submucosal ganglia also contained VIP-LI, but all VIP-LI-positive cells did not express NADPH-d activity. These data are consistent with recent physiological studies suggesting that nitric oxide serves as an inhibitory neurotransmitter in the pyloric and ileocolonic sphincters. The data also suggest that VIP is expressed in a sub-population of NADPH-d-positive neurons and may therefore act as a co-transmitter in enteric inhibitory neurotransmission to these specialized muscular regions.  相似文献   

7.
There is strong evidence that NADPH-diaphorase can be used as a marker for neurones that employ nitric oxide as a messenger molecule. In the present study, the NADPH-diaphorase activity of intracardiac neurones and nerve terminals in whole-mount stretch preparations and sections of the newborn and adult guinea-pig atria and interatrial septum has been examined histochemically. Together with epicardial, endothelial and endocardial cells, which displayed some NADPH-diaphorase staining, a subpopulation of intracardiac neurones exhibited moderate-heavy labelling for NADPH-diaphorase, while the majority of neurones were only lightly stained or negative. Intracardiac ganglia containing positive neuronal cell bodies were located between the epicardial cells and atrial myocytes in four main regions: in association with the superior and inferior vena cavae, the points of entry of the pulmonary veins, and within the interatrial septum. Nerve terminals exhibiting NADPH-diaphorase activity were seen throughout the atrial tissue, forming basket-like endings around intracardiac neuronal cell bodies; varicose terminals were also observed on atrial myocytes and other non-neuronal structures. A proportion of the nerve fibres was clearly of intrinsic origin, other terminals may well have originated from neuronal cell bodies present outside the heart.  相似文献   

8.
This is the first report on the ultrastructural pattern of distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in endothelial cells, using the rabbit aorta, and its colocalization with the neuronal isoform (type I) of nitric oxide synthase. About 30% of the endothelial cells showed a positive reaction for NADPH-d compared to about 6% for nitric oxide synthase immunoreactivity. Simultaneous double histochemical-immunocytochemical labelling procedures indicate that all of the cells displaying nitric oxide synthase-positive reactivity also contained NADPH-d; the remainder of NADPH-d-positive endothelial cells were negative for this isoform of nitric oxide synthase. Nitric oxide synthase-immunogold labelling was mostly associated with free ribosomes, while NADPH-d activity was distributed largely in patches in the cytoplasm and in association with the cell membrane.  相似文献   

9.
The presence of vasoactive intestinal polypeptide (VIP) has been analyzed in fibers and neurons within the guinea pig intrinsic cardiac ganglia and in fibers innervating cardiac tissues. In whole-mount preparations, VIP-immunoreactive (IR) fibers were present in about 70% of the cardiac ganglia. VIP was co-localized with neuronal nitric oxide synthase (nNOS) in fibers innervating the intrinsic ganglia but was not present in fibers immunoreactive for pituitary adenylate cyclase-activating polypeptide, choline acetyltransferase (ChAT), tyrosine hydroxylase, or substance P. A small number of the intrinsic ChAT-IR cardiac ganglia neurons (approximately 3%) exhibited VIP immunoreactivity. These few VIP-IR cardiac neurons also exhibited nNOS immunoreactivity. After explant culture for 72 h, the intraganglionic VIP-IR fibers degenerated, indicating that they were axons of neurons located outside the heart. In cardiac tissue sections, VIP-IR fibers were present primarily in the atria and in perivascular connective tissue, with the overall abundance being low. VIP-IR fibers were notably sparse in the sinus node and conducting system and generally absent in the ventricular myocardium. Virtually all VIP-IR fibers in tissue sections exhibited immunoreactivity to nNOS. A few VIP-IR fibers, primarily those located within the atrial myocardium, were immunoreactive for both nNOS and ChAT indicating they were derived from intrinsic cardiac neurons. We suggest that, in the guinea pig, the majority of intraganglionic and cardiac tissue VIP-IR fibers originate outside of the heart. These extrinsic VIP-IR fibers are also immunoreactive for nNOS and therefore most likely are a component of the afferent fibers derived from the vagal sensory ganglia. This work was supported by NIH grant HL65481 (R.L.P.) and HL54633 (D.B.H.). Use of the DeltaVision Restoration microscope was provided through the Imaging/Physiology Core supported by NIH Grant P20 RR16435 from the COBRE program of the National Center for Research Resources  相似文献   

10.
The presence of nitric oxide synthase (NOS) and role of nitric oxide (NO) in vascular regulation was investigated in the Australian lungfish, Neoceratodus forsteri. No evidence was found for NOS in the endothelium of large and small blood vessels following processing for NADPH-diaphorase histochemistry. However, both NADPH-diaphorase histochemistry and neural NOS immunohistochemistry demonstrated a sparse network of nitrergic nerves in the dorsal aorta, hepatic artery, and branchial arteries, but there were no nitrergic nerves in small blood vessels in tissues. In contrast, nitrergic nerves were found in non-vascular tissues of the lung, gut and kidney. Dual-wire myography was used to determine if NO signalling occurred in the branchial artery of N. forsteri. Both SNP and SIN-1 had no effect on the pre-constricted branchial artery, but the particulate guanylyl cyclase (GC) activator, C-type natriuretic peptide, always caused vasodilation. Nicotine mediated a dilation that was not inhibited by the soluble GC inhibitor, ODQ, or the NOS inhibitor, L-NNA, but was blocked by the cyclooxygenase inhibitor, indomethacin. These data suggest that NO control of the branchial artery is lacking, but that prostaglandins could be endothelial relaxing factors in the vasculature of lungfish.  相似文献   

11.
Nitric oxide (NO) is a well-recognized versatile signaling molecule. It is produced by catalytic action of nitric oxide synthase (NOS) on L-arginine in a variety of animal tissues. Existence of different isoforms of NOS has been shown in mammalian testis, but report on their presence in the testis of ectothermic vertebrates is non-existent. This study demonstrates the differential expressions of two isoforms of nitric oxide synthase (neuronal-nNOS and inducible-iNOS) like molecules in different cell types in the testis of seasonally breeding catfish, Clarias batrachus through immunohistochemistry. Positive immunoprecipitation of nNOS and iNOS like molecules were detected in germ cells as well as interstitial cells only in the recrudescing and fully mature fish. The immunoreactions differed in intensity and varied with changing reproductive status. Treatment of adult male fish with NO donor, sodium nitroprusside, and a NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME) increased and decreased the total nitrate and nitrite concentration in the testis, respectively. Sodium nitroprusside and L-NAME also induced simultaneous decline and rise in the testicular testosterone level, respectively. These findings, thus, suggest that NOS isoforms are expressed variedly in different cell types in the testis of reproductively active fish. This investigation also suggests that NO inhibits testosterone production in the testis.  相似文献   

12.
Nitric oxide (NO) is an ubiquitous intercellular messenger molecule synthesised from the amino acid arginine by the enzyme nitric oxide synthase (NOS). A number of NOS iso-enzymes have been identified, varying in molecular size, tissue distribution and possible biological role. To further understand the role of NO in the regulation of neuroendocrine function in the sheep, we have purified and characterised ovine neuronal NOS (nNOS) using anion exchange, affinity and size-exclusion chromatography. SDS-PAGE reveals that ovine nNOS has an apparent denatured molecular weight of 150 kDa which correlates well with the other purified nNOS forms such as rat, bovine and porcine. The native molecular weight predicted by size-exclusion chromatography was 200 kD which is in close agreement with that found for porcine and rat nNOS. Internal amino acid sequences generated from tryptic digests of the purified ovine nNOS are highly homologous to rat nNOS. There was no significant difference in the cofactor dependence and kinetic characteristics of ovine nNOS when compared to rat and bovine nNOS, (Km for arginine 2.8, 2.0 and 2.3 μM respectively). A polyclonal anti-peptide antibody directed toward the C-terminal end of the rat nNOS sequence showed full cross-reactivity with the purified ovine nNOS. Immunohistochemical and Western analysis using this antiserum demonstrate the expression of nNOS in the cortex, cerebellum, hypothalamus and pituitary of the sheep. The lack of staining in the neural and anterior lobes of the pituitary seems to suggest that NOS plays a varied role in the control of endocrine systems between species.  相似文献   

13.
Enzyme histochemistry and immunocytochemistry were used to determine the distribution of neurons in the snail Helix aspersa which exhibited nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity and/or immunoreactivity to nitric oxide synthase (NOS). NADPH diaphorase-positive cells and fibres were distributed extensively throughout the central and peripheral nervous system. NADPH diaphorase-positive fibres were present in all neuropil regions of the central and peripheral ganglia, in the major interganglionic connectives and in peripheral nerve roots. NADPH diaphorase-positive cell bodies were found consistently in the eyes, the lips, the tentacular ganglia and the procerebral lobes of the cerebral ganglia; staining of cell bodies elsewhere in the nervous system was capricious. The distribution of NOS-like immunoreactivity differed markedly from that of NADPH diaphorase activity. Small clusters of cells which exhibited NOS-like immunoreactivity were present in the cerebral and pedal ganglia; fibres which exhibited NOS-like immunoreactivity were present in restricted regions of the neuropil of the central ganglia. The disjunct distributions of NADPH diaphorase activity and NOS-like immunoreactivity in the neurvous system of Helix suggest that the properties of neuronal NOS in molluscs may differ sigificantly from those described previously for vertebrate animals.  相似文献   

14.
The relative sensitivities of the olfactory receptors in the antenna and maxillary palp of the fleshfly, Neobellieria bullata, were assessed using simultaneous electroantennograms (EAGs) and electropalpograms (EPGs). In general, the antennae and maxillary palps were more sensitive to odors related to animals (blood extract and saturated carboxylic acid) than to odors that were plant-derived (citral, hexenol, hexenal). In addition, the maxillary palps were relatively less sensitive to plant-derived odorants than the antennae, perhaps related to their anatomical position. Scanning electron microscopy was also used to assess the types of sensilla found on the two organs. In addition, NADPH-diaphorase histochemistry was used in an attempt to localize the enzyme nitric oxide synthase (NOS) in the antenna and the maxillary palps. We found evidence of NADPH-diaphorase staining in both organs, with localized staining in the antennal cells and more general staining in the maxillary palps. When NOS was selectively blocked using the antagonist L-NAME, the amplitude of the EAGs and EPGs to odorants fell by 30-50%. In contrast, application of the inactive enantiomer, D-NAME, did not change the amplitude of the EAGs or the EPGs. Our results indicate that NOS is involved in the function of olfactory receptor cells in the fleshfly.  相似文献   

15.
16.
The aim of this study was to determine the levels of tissue and blood zinc (Zn), copper (Cu), magnesium (Mg) in nitric oxide (NO) synthase blockade-induced hypertension. A group of albino rats received a NO synthase inhibitor, N G -nitro-l-arginine-methyl ester (l-NAME, 60 mg/kg/d) in their drinking water for 21 d. l-NAME intake caused a progressive rise in this group’s resting mean arterial blood pressure compared to a control group (p<0.01). There were no differences between the groups with regard to tissue and blood levels of Zn or Cu; however, Mg concentrations were significantly lower in the hypertensive rats’ erythrocytes (20.2% reduction from control levels), cerebral cortex (17.0%), heart (9.1%), renal cortex (12%), renal medulla (16.7%), and in the tissues of the caval vein (23.7%), mesenteric artery (29.8%), renal artery (18.4%), and renal vein (22.1%). There were no significant Mg concentration changes in the hypertensive group’s plasma, cerebellum, liver, duodenum, or aortal tissue. These findings suggest that Mg depletion may play a role in the blood pressure rise that occurs in the model of chronic NO synthase inhibition-induced hypertension.  相似文献   

17.
Yu KL  Tamada Y  Suwa F  Fang YR  Tang CS 《Life sciences》2006,78(10):1143-1148
Many histochemical investigations indicated that the oxytocin (OXY), the arginine vasopressin (AVP) and the nitric oxide synthase (NOS) have been synthesized in the supraoptic nucleus (SON) neurons. The objective of this study was to examine the age-related expression of the OXY, the AVP and the NOS in the SON of the young adult (2-month-old) and the aged (24-month-old) rats. The histochemistry for reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d; marker for the NOS) and the double labeling histochemistry for the OXY/NADPH-d or the AVP/NADPH-d were employed, and the quantitative analysis was performed with a computer-assisted image processing system. In comparison of the young adult and the aged group, the cell number, the cell size and the reactive density of the NOS-expressing neurons showed a significant increase along with age, and these evidences suggested the age-related increase of the nitric oxide (NO) production. The age-related significant increase was not detected in the number of the OXY/NOS-expressing neurons in the dorsal part, but was detected in the number of the AVP/NOS-expressing neurons in the ventral part. Based on our histochemical findings and reports demonstrated by other authors, we attempted to discuss the physiological role of NOS for the secretion of posterior pituitary hormones along with age.  相似文献   

18.
Summary Location, distribution and density of nerve fibers immunoreactive to neuropeptide tyrosine, vasoactive intestinal polypeptide and substance P were studied in the reproductive tract of the female rat and compared with acetylcholinesterase-positive (cholinergic) and noradrenergic nerves. Plexuses of all types of fibers were present in the vagina, uterine cervix, uterine horn and oviduct. In the tubular reproductive organs all of these types of nerve fibers appeared to innervate vascular and non-vascular smooth muscle and nearly all types of fibers formed plexuses subjacent to the epithelium lining the organs. Individual fibers of all classes appeared to innervate fascicles of smooth muscle in the mesometrium of the uterine horn. A few acetylcholinesterase-positive and substance P-immunoreactive fibers were present in the ovary but no vasoactive intestinal polypeptide-immunoreactive nerves were observed. Noradrenergic and neuropeptide tyrosine-immunoreactive nerves were numerous in the ovary where they were seen in the interstitial gland tissue and associated with follicles and blood vessels. It is suggested that these nerves may influence hemodynamic events and non-vascular smooth muscle in such functions as transport of sperm and ova and parturition. Substance P-immunoreactive nerve fibers are likely to be sensory fibers that could have roles in neurohormonal reflexes.  相似文献   

19.
By careful analysis of experimental X-ray ligand crystallographic protein data across several inhibitor series we have discovered a novel, potent and selective series of iNOS inhibitors exemplified by compound 8.  相似文献   

20.
Cyclic AMP inhibits the expression of nitric oxide synthase (Harbrecht et al., 1995 [1]) in hepatocytes but the mechanism for this effect is incompletely understood. Cyclic AMP can activate several intracellular signaling pathways in hepatocytes including Protein Kinase A (PKA), cAMP regulated guanine nucleotide exchange factors (cAMP-GEFs), and calcium-mediated Protein Kinases. There is considerable overlap and cross-talk between many of these signaling pathways, however, and how these cascades regulate hepatocyte iNOS is not known. We hypothesized that Akt mediates the effect of cAMP on hepatocyte iNOS expression. Hepatocytes cultured with cytokines and dbcAMP increased Akt phosphorylation up to 2 h of culture. Akt phosphorylation was inhibited by the PI3K inhibitor LY294002 (10 μM), farnyltranferase inhibitor FTI-276, or transfection with a dominant negative Akt. The cyclic AMP-induced suppression of cytokine-stimulated iNOS was partially reversed by LY294002 and FTI-276. LY294002 also increased NFκB nucleus translocation by Western blot analysis in nuclear extracts. Cyclic AMP increased phosphorylation of Raf1 at serine 259 which was blocked by LY294002 and associated with decreased MAPK P44/42 phosphorylation. However, inhibition of MAPK P44/42 signaling with PD98059 failed to suppress cytokine-induced hepatocyte iNOS expression and did not enhance the inhibitory effect of dbcAMP on iNOS production. A constitutively active MAPK P44/42 plasmid had no effect on cytokine-stimulated NO production. These data demonstrate that dbcAMP regulates hepatocyte iNOS expression through an Akt-mediated signaling mechanism that is independent of MAPK P44/42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号