首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enantioselective high-performance liquid chromatographic assay for the quantification of methadone in human and beagle plasma is described. The procedure involves extraction of methadone from alkalized plasma into hexane—isoamyl alcohol (99:1, v/v). Stereoselective separation was achieved with a silica column with covalently bound α1-acid glycoprotein (Chiral-AGP) without any derivatization procedure. The detection wavelength was set at 215 nm. Using an internal standard provided reliable control of the extraction procedure as well as quantification of the enantiomers of methadone. The limit of quantification was found to be 2.5 ng/ml. The method was demonstrated to be sufficiently sensitive for stereoselective pharmacokinetic studies of methadone.  相似文献   

2.
A method has been developed for the determination of total celiprolol (sum of enantiomers) or the enantiomers (R)-celiprolol and (S)-celiprolol in plasma by high-performance liquid chromatography with UV and fluorescence detection. After extraction from alkalinized plasma with methyl-tert-butyl ether and back-extraction into 0.01 M HCl (for total celiprolol determination) or after evaporation of the organic phase and derivatisation with R(−)-1-(1-naphthyl)ethyl isocyanate (enantiomer determination), total celiprolol or its diastereomeric derivatives were chromatographed on a reversed-phase HPLC column with a mixture of acetonitrile and phosphate buffer pH 3.5 (+0.05% triethylamine). Acebutolol was used as internal standard. Linearity was obtained in the range of 5 to 2000 ng/ml for total and 2.5 to 500 ng/ml for enantiomer determination. Intra-day and inter-day variation was lower than 10%. The method can be applied for analysis of plasma samples obtained from patients treated with oral racemic celiprolol doses.  相似文献   

3.
A simple and highly sensitive high-performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of lansoprazole enantiomers and their metabolites, 5-hydroxylansoprazole enantiomers and lansoprazole sulfone, in human plasma have been developed. Chromatographic separation was achieved with a Chiral CD-Ph column using a mobile phase of 0.5M NaClO(4)-acetonitrile-methanol (6:3:1 (v/v/v)). The analysis required only 100 microl of plasma and involved a solid-phase extraction with Oasis HLB cartridge, with a high extraction recovery (>94.1%) and good selectivity. The lower limit of quantification (LOQ) of this assay was 10 ng/ml for each enantiomer of both lansoprazole and 5-hydroxylansoprazole, and 5 ng/ml for lansoprazole sulfone. The coefficient of variation of inter- and intra-day assay was <8.0% and accuracy was within 8.4% for all analytes (concentration range 10-1000 ng/ml). The linearity of this assay was set between 10 and 1000 ng/ml (r2>0.999 of the regression line) for each of the five analytes. This method is applicable for accurate and simultaneous monitoring of the plasma levels of lansoprazole enantiomers and their metabolites in the renal transplant recipients.  相似文献   

4.
A sensitive HPLC method for the quantification of praziquantel enantiomers in human serum is described. The method involves the use of a novel disc solid-phase extraction for sample clean-up prior to HPLC analysis and is also free of interference from trans-4-hydroxypraziquantel, the major metabolite of praziquantel. Chromatographic resolution of the enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OJ-R) under isocratic conditions using a mobile phase consisting of 0.1 M sodium perchlorate–acetonitrile (66:34, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R-(−)- and S-(+)-praziquantel enantiomers were in the range of 84–89% at 50–500 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 3–8% and 1–8% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.2–5% and 0.3–8% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 10–600 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 5 ng/ml (S/N=2).  相似文献   

5.
We present a method for the enantioselective analysis of propafenone in human plasma for application in clinical pharmacokinetic studies. Propafenone enantiomers were resolved on a 10-μm Chiralcel OD-R column (250×4.6 mm I.D.) after solid-phase extraction using disposable solid-phase extraction tubes (RP-18). The mobile phase used for the resolution of propafenone enantiomers and the internal standard propranolol was 0.25 M sodium perchlorate (pH 4.0)–acetonitrile (60:40, v/v), at a flow-rate of 0.7 ml/min. The method showed a mean recovery of 99.9% for (S)-propafenone and 100.5% for (R)-propafenone, and the coefficients of variation obtained in the precision and accuracy study were below 10%. The proposed method presented quantitation limits of 25 ng/ml and was linear up to a concentration of 5000 ng/ml of each enantiomer.  相似文献   

6.
A high-performance liquid chromatographic method for the quantitation of finasteride in human plasma is presented. The method is based on liquid–liquid extraction with hexane–isoamylalcohol (98:2, v/v) and reversed-phase chromatography with spectrophotometric detection at 210 nm. The mobile phase consists of acetonitrile–15 mM potassium dihydrogenphosphate (40:60, v/v). Clobazam is used as the internal standard. The limit of quantitation is 4 ng/ml and the calibration curve is linear up to 300 ng/ml. Within-day and between-day precision expressed by relative standard deviation is less than 5% and inaccuracy does not exceed 8%. The assay was used for pharmacokinetic studies.  相似文献   

7.
A procedure using a chirobiotic V column is presented which allows separation of the enantiomers of citalopram and its two N-demethylated metabolites, and of the internal standard, alprenolol, in human plasma. Citalopram, demethylcitalopram and didemethylcitalopram, as well as the internal standard, were recovered from plasma by liquid–liquid extraction. The limits of quantification were found to be 5 ng/ml for each enantiomer of citalopram and demethylcitalopram, and 7.5 ng/ml for each enantiomer of didemethylcitalopram. Inter- and intra-day coefficients of variation varied from 2.4% to 8.6% for S- and R-citalopram, from 2.9% to 7.4% for S- and R-demethylcitalopram, and from 5.6% to 12.4% for S- and R-didemethylcitalopram. No interference was observed from endogenous compounds following the extraction of plasma samples from 10 different patients treated with citalopram. This method allows accurate quantification for each enantiomer and is, therefore, well suited for pharmacokinetic and drug interaction investigations. The presented method replaces a previously described highly sensitive and selective high-performance liquid chromatography procedure using an acetylated β-cyclobond column which, because of manufactural problems, is no longer usable for the separation of the enantiomers of citalopram and its demethylated metabolites.  相似文献   

8.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

9.
Methocarbamol enantiomers in rat and human plasma were quantified using a stereospecific high-performance liquid chromatographic method. Racemic methocarbamol and internal standard, (R)-(−)-flecainide, were isolated from plasma by a single-step extraction with ethyl acetate. After derivatization with the enantiomerically pure reagent (S)-(+)-1-(1-naphthyl)ethyl isocyanate, methocarbamol diastereomers and the (R)-flecainide derivative were separated on a normal-phase silica column with a mobile phase consisting of hexane—isopropanol (95:5, v/v) at a flow-rate of 1.6 ml/min. Ultraviolet detection was carried out at a wavelength of 280 nm. The resolution factor between the diastereomers was 2.1 (α = 1.24). An excellent linearity was observed between the methocarbamol diastereomers/internal standard derivative peak-area ratios and plasma concentrations, and the intra- and inter-day coefficients of variation were always <9.8%. The lowest quantifiable concentration was 0.5 μg/ml for each enantiomer (coefficients of variation of 9.8 and 8.8% for (S)- and (R)-methocarbamol, respectively), while the limit of detection (signal-to-noise ratio 3:1) was approximately 10 ng/ml. The assay was used to study the pharmacokinetics of methocarbamol enantiomers in a rat following intravenous administration of a 120 mg/kg dose of racemic methocarbamol and to evaluate plasma and urine concentrations in a human volunteer after oral administration of a 1000-mg dose of the racemate. The method is suitable for stereoselective pharmacokinetic studies in humans as well as in animal models.  相似文献   

10.
A rapid, selective and very sensitive ion-pairing reversed-phase HPLC method was developed for the simultaneous determination of trimebutine (TMB) and its major metabolite, N-monodesmethyltrimebutine (NDTMB), in rat and human plasma. Heptanesulfonate was employed as the ion-pairing agent and verapamil was used as the internal standard. The method involved the extraction with a n-hexane–isopropylalcohol (IPA) mixture (99:1, v/v) followed by back-extraction into 0.1 M hydrochloric acid and evaporation to dryness. HPLC analysis was carried out using a 4-μm particle size, C18-bonded silica column and water–sodium acetate–heptanesulfonate–acetonitrile as the mobile phase and UV detection at 267 nm. The chromatograms showed good resolution and sensitivity and no interference of plasma. The mean recoveries for human plasma were 95.4±3.1% for TMB and 89.4±4.1% for NDTMB. The detection limits of TMB and its metabolite, NDTMB, in human plasma were 1 and 5 ng/ml, respectively. The calibration curves were linear over the concentration range 10–5000 ng/ml for TMB and 25–25000 ng/ml for NDTMB with correlation coefficients greater than 0.999 and with within-day or between-day coefficients of variation not exceeding 9.4%. This assay procedure was applied to the study of metabolite pharmacokinetics of TMB in rat and the human.  相似文献   

11.
A modified method for the determination of gacyclidine enantiomers in human plasma by GC–MS with selected-ion monitoring using the deuterated derivative of gacyclidine (d3-gacyclidine) as internal standard was developed. Following a single-step liquid–liquid extraction with hexane, drug enantiomers were separated on a chiral fused-silica capillary column (CP-Chirasil-Dex; Chrompack). The fragment ion, m/z 266, was selected for monitoring d3-gacyclidine (retention times of 35.2 and 35.6 min for the (+)- and (−)-enantiomer, respectively) whereas the fragment ion, m/z 263, was selected for quantitation of gacyclidine (retention times of 35.4 and 35.9 min for the (+)- and (−)-enantiomer, respectively). The limit of quantitation for each enantiomer was 0.3 ng/ml, using 1 ml of sample, with a relative standard deviation (RSD) <14% and a signal-to-noise ratio of 5. The extraction recovery of both gacyclidine enantiomers from human plasma was about 75%. The calibration curves were linear (r2>0.996) over the working range of 0.312 to 20 ng/ml. Within- and between-day RSD were <9% at 5, 10 and 20 ng/ml, and <16% at 0.312, 0.625, 1.25 and 2.5 ng/ml. Intraday and interday bias were less than 11% for both enantiomers. The chromatographic behavior of d3-gacyclidine remained satisfactory even after more than 500 injections. Applicability of this specific and stereoselective assay is demonstrated for a clinical pharmacokinetic study with racemic gacyclidine.  相似文献   

12.
A sensitive and stereoselective high-performance liquid chromatographic assay for the determination of the enantiomers of metoprolol (R- and S-) and the diastereoisomers of α-hydroxymetoprolol (IIA, IIB) in plasma is reported. Chromatography involved direct separation of enantiomers using a Chirobiotic T bonded phase column (250×4.6 mm) and a mobile phase consisting of acetonitrile–methanol–methylene chloride–glacial acetic acid–triethylamine (56:30:14:2:2, v/v). Solid-phase extraction using silica bonded with ethyl group (C2) was used to extract the compounds of interest from plasma and atenolol was used as the internal standard. The column effluent was monitored using fluorescence detection with excitation and emission wavelengths of 225 and 310 nm, respectively. S-Metoprolol,R-metoprolol, IIB and IIA eluted at about 5.9, 6.7, 7.3 and 8.2 min without any interfering peaks. The calibration curve was linear over the range of 0.5 to 100 ng/ml for each isomer of metoprolol and 1 to 100 ng/ml for each isomer of α-hydroxymetoprolol (IIA & IIB). The mean intra-run accuracies were in the range of 96.2 to 114% for R-metoprolol, 94.0 to 111% for S-metoprolol, 90.2 to 110% for IIA, and 94.6 to 106% for IIB. The mean intra-run precisions were all in the range of 2.2 to 12.0% for R-metoprolol, 2.1 to 11.1% for S-metoprolol, 1.9 to 14.5% for IIA, and 3.2 to 11.0% for IIB. The lowest level of quantitation for the enantiomers of metoprolol was 0.5 ng/ml and 1.0 ng/ml for α-hydroxymetoprolol (IIA and IIB). The absolute recoveries for each analyte was ≥95%. The validated method accurately quantitated the enantiomers of parent drug and metabolite after a single dose of an extended release metoprolol formulation.  相似文献   

13.
A selective high-performance liquid chromatographic (HPLC) assay for a sigma receptor antagonist, DuP 734 (I), in rat plasma has been developed. Compound I and internal standard, XC031 (I.S.), were first extracted from plasma into an ethyl acetate—toluene mixture (3:7, v/v) and then back-extracted into freshly prepared phosphoric acid (0.03 M). Separation of I and I.S. with no interference from endogenous substances was achieved on a reversed-phase octyl column and detection was by UV at 229 nm. The mobile phase consisted of acetonitrile—glacial acetic acid—triethylamine—0.05 M ammonium acetate (670:4:2:2000, v/v). Using 0.5 ml of rat plasma for extraction, the limit of quantitation was 43 ng/ml and the assay was linear from 43 to 8536 ng/ml. The intra- and inter-day coefficients of variation ranged from 0.7 to 3.0%, and from 1.4 to 14.5%, respectively, over the entire concentration range. The accuracy was within 16.1% of the spiked concentrations. I was stable in frozen plasma at −20°C for at least 68 days.  相似文献   

14.
A sensitive capillary electrophoretic method for the determination of carvedilol enantiomers in 100 μl of human plasma has been developed and validated. Carvedilol and the internal standard carazolol are isolated from plasma samples by liquid–liquid extraction using diethylether. A sensitive and selective detection is provided by helium–cadmium laser-induced fluorescence. The total analysis time is 17.5 min, about 30 min are needed for the sample preparation. The linearity of the assay ranges from 1.56 to 50 ng/ml per carvedilol enantiomer. The limits of quantification (LOQ) for the carvedilol enantiomers in 100 μl of human plasma are 1.56 ng/ml. The inter-day accuracy for R-carvedilol is between 95.8 and 103% (104% at LOQ) and for S-carvedilol between 97.1 and 103% (107% at LOQ); the inter-day precision values are between 3.81 and 8.64% (10.9% at LOQ) and between 5.47 and 7.86% (7.91% at LOQ) for R- and S-carvedilol, respectively. The small sample volume needed is especially advantageous for the application in clinical studies in pediatric patients. As an application of the assay concentration/time profiles of the carvedilol enantiomers in a 5-year-old patient receiving a test dose of 0.09 mg/kg carvedilol are reported.  相似文献   

15.
Sensitive methods based on capillary gas chromatography (GC) with mass spectrometric (MS) detection in a selected-ion monitoring mode (SIM) for the determination of racemic felodipine, its enantiomers, and a pyridine metabolite in human plasma are described. Following liquid-liquid extraction from plasma, enantiomers of felodipine were separated on a chiral HPLC column (Chiralcel OJ) and fractions containing each isomer were collected on a continuous basis using a fraction collector. These fractions were later analyzed by GC-MS-SIM. A similar method based on GC-MS-SIM detection was developed for the determination of racemic felodipine and its pyridine metabolite with a minor modification of sample preparation. The limits of quantitation in plasma were 0.1 ng/ml for both the R(+)- and S(−)-enantiomers of felodipine and 0.5 ng/ml for both racemic felodipine and its pyridine metabolite. The stereoselective assay was used to support a clinical study with racemic felodipine, and was capable of analyzing more than 30 plasma samples per day.  相似文献   

16.
A sensitive and stereospecific HPLC method was developed for the analysis of (−)- and (+)-pentazocine in human serum. The assay involves the use of a phenyl solid-phase extraction column for serum sample clean-up prior to HPLC analysis. Chromatographic resolution of the pentazocine enantiomers was performed on a octadecylsilane column with sulfated-β-cyclodextrin (S-β-CD) as the chiral mobile phase additive. The composition of the mobile phase was aqueous 10 mM potassium dihydrogenphosphate buffer pH 5.8 (adjusted with phosphoric acid)–absolute ethanol (80:20, v/v) containing 10 mM S-β-CD at a flow-rate of 0.7 ml/min. Recoveries of (−)- and (+)-pentazocine were in the range of 91–93%. Linear calibration curves were obtained in the 20–400 ng/ml range for each enantiomer in serum. The detection limit based on S/N=3 was 15 ng/ml for each pentazocine enantiomer in serum with UV detection at 220 nm. The limit of quantitation for each enantiomer was 20 ng/ml. Precision calculated as R.S.D. and accuracy calculated as error were in the range 0.9–7.0% and 1.2–6.2%, respectively, for the (−)-enantiomer and 0.8– 7.6% and 1.2–4.6%, respectively, for the (+)-enantiomer (n=3).  相似文献   

17.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of albendazole sulfoxide (ABZSO) enantiomers and albendazole sulfone (ABZSO2) in human plasma. The resolution of ABZSO enantiomers and ABZSO2 was obtained on a Chiralpak® AD column using hexane–isopropanol–ethanol (81:14.25:4.75, v/v/v) as the mobile phase. The drugs were detected by fluorescence (λexc=280 nm, λem=320 nm). The drugs were extracted from 500 μl plasma with ethyl acetate, and after solvent evaporation, the residues were dissolved in the mobile phase and chromatographed. The method was precise and accurate for the three compounds, as judged by the coefficients of variation and relative errors observed. Linear standard curves were obtained in the concentration range of 5–2500 ng/ml for ABZSO enantiomers and 1–500 ng/ml for ABZSO2. A typical plasma concentration–time profile is presented for one patient under treatment for neurocysticercosis.  相似文献   

18.
A sensitive, selective and reproducible reversed-phase HPLC method with ultraviolet detection was developed for the quantification of diazepam in small plasma samples from children with severe malaria. The method involves plasma deproteinization with acetonitrile, followed by liquid–liquid extraction with ethyl acetate–n-hexane. Diazepam was eluted at ambient temperatures from a reversed-phase C18 column with an acidic (pH 3.5) aqueous mobile phase (10 mM KH2PO4–acetonitrile, 69:31, v/v). Calibration curves in spiked plasma were linear from 10 to 200 ng (r2≥0.99). The limit of detection was 5.0 ng/ml, and relative recoveries at 25 and 180 ng were >87%. Intra- and inter-assay relative standard deviations were <15%. There was no interference from drugs commonly administered to children with severe malaria (phenobarbitone, phenytoin, chloroquine, quinine, sulfadoxine, pyrimethamine, halofantrine, cycloguanil, chlorcycloguanil, acetaminophen and salicylate). This method has been used for monitoring plasma diazepam concentrations in children with seizures associated with severe malaria.  相似文献   

19.
A stereoselective reversed-phase HPLC assay to quantify S-(−) and R-(+) enantiomers of propranolol and 4-hydroxypropranolol in human plasma was developed. The method involved liquid–liquid extraction for sample clean-up and employed 2,3,4,6-tetra-O-acetyl-β-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The internal standard used was 4-methylpropranolol. The derivatized products were separated on an Altex C18 column using a mixture of acetonitrile–water–phosphoric acid–triethylamine (58:42:0.1:0.06 and 50:50:0.15:0.06, v/v, for propranolol and 4-hydroxypropranolol, respectively) as mobile phase. The detection of propranolol derivatives was made at λex=280 nm and λem=325 nm, and the corresponding 325 and 400 nm were used for 4-hydroxypropranolol derivatives. The assay was linear from 1 to 100 ng/ml and from 2 to 50 ng/ml using 0.5 ml of human plasma for propranolol and 4-hydroxypropranolol enantiomers, respectively. The present assay is used to quantify the enantiomers of propranolol and 4-hydroxypropranolol, respectively, in human plasma for pharmacokinetic studies.  相似文献   

20.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号