首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human thymus is composed of several discrete compartments. Stage III thymocytes, located mainly in the medulla, stain brightly with anti-T3 monoclonal antibody; stage II thymocytes, located in the cortex, are T3- but react with T6 antibodies. The earliest identifiable intrathymic cell (stage I) expresses the sheep erythrocyte glycoprotein T11 but not T6 or T3 antigens. Within the thymus a phenotypically heterogeneous pool of proliferating lymphoblasts is present. This capacity to proliferate without in vitro activation is mainly attributable to thymocytes unable to respond to mitogens and expressing the cortical T6 marker. Both T3+ and T3-T6- cells respond to mitogen. However, in order to exhibit maximal proliferative responses, T3+ but not T3-T6- thymocytes require the addition of exogenous IL 2. Thymocyte subsets at distinct stages of intrathymic differentiation were then analyzed for glucocorticoid (GC) receptor content by using a whole cell assay with 3H-triamcinolone acetonide as tracer. The least mature T3-T6- thymocyte subset contained the highest levels of GC receptors . T3+ thymocytes exhibited a receptor content higher than that found in T6+ cells and similar to that reported for peripheral blood lymphocytes. Apart from the number, the GC receptor sites in all thymocyte subsets were similar in their affinities, kinetic characteristics, specificity for steroids, and ability to undergo translocation from cytoplasm to nucleus, and they behave in all these respects like binding sites of GC receptors in lymphoid and other cells. Independently of both phenotype and GC receptor content, all in vivo activated thymocytes (i.e., spontaneously proliferating cells) were similarly sensitive to the steroid inhibitory action in vitro. Both in the presence and in the absence of exogenous IL 1 or IL 2, the PHA-induced mitogenesis of T3-T6- cells was less inhibited by GC than that of T3+ thymocytes. Exogenous IL 1 and IL 2 were equally effective in removing, although not completely, the GC inhibition on T3-T6- proliferative responses to PHA. Relative to T3+ cell mitogenesis, only exogenous IL 2 was able to antagonize the steroid inhibitory action. The capacity observed in vitro of GC to differentially affect the proliferative potential or the cell viability of thymocytes belonging to functionally distinct subsets suggests that these hormones could regulate the intrathymic maturative pathways. Finally, although at present the physiologic relevance of the highest expression of GC receptors in intrathymic precursor cells remains unclear, the receptor density may be considered a marker of differentiation for the T lymphoid lineage.  相似文献   

2.
Proliferative and cytollytical activity of lymphocytes was compared in lymphocyte alloimmunization of the spleen and intact thymus. The count of live cells and DNA-synthesizing cells in the thymocyte monoculture was 10--15-fold, and in mixed thymus cell culture--about 5-fold lower than the corresponding amounts of spleen cells. The index of immune thymocyte stimulation was several times greater than that of the immune cells of the spleen. The cytotoxicity peak was observed on the 4th--5th day of stimulation when the cytolytic activity of the immune thymocytes approached the action of the immune cells of the spleen. Low DNA synthesis and a marked cytotoxic activity of immune thymocytes signified that stimulation of the thymus cells in vitro permitted to obtain cell population with a high content of cytolytic T-lymphocytes.  相似文献   

3.
Glucocorticoids initiate a cytolytic process in lymphoid cells that is characteristic of programmed cell death. In vivo treatment of adrenalectomized rats with glucocorticoids results in the rapid degradation of the thymocyte genome at internucleosomal sites. This DNA degradation occurs prior to cell death, and considerable evidence indicates that this nucleolytic event is central to the initiation of lymphocytolysis. To further characterize this process, we have searched for the gene products in thymocytes which may be responsible for steroid-induced DNA degradation. Adrenalectomized rats were treated in vivo with dexamethasone or a vehicle control; nuclear thymocyte proteins were extracted with 0.6 M NaCl and analyzed for protein content or nuclease activity on sodium dodecyl sulfatepolyacrylamide gels containing calf thymus DNA. Glucocorticoid treatment resulted in the induction of two major protein families, a 30-32-kDa protein doublet and a series of 3-4 proteins of 12-19 kDa, both of which express prominent DNase activity. Induction of the lower molecular weight nucleases increased with time after steroid treatment and paralleled the time course of glucocorticoid-mediated DNA degradation. Nuclease induction was blocked by the glucocorticoid antagonist RU 486, indicating a steroid receptor-mediated process. When nuclei from glucocorticoid-resistant cells were incubated with nuclear extracts from glucocorticoid-treated rats, the DNA was cleaved at internucleosomal sites, whereas extracts from vehicle-treated animals were virtually inactive. Based on these findings we propose that glucocorticoids, acting via a receptor-mediated pathway, induce a nucleolytic "lysis gene" product(s) responsible for lymphocytolysis.  相似文献   

4.
The developmental history of accessory cells in the thymus was studied by grafting hemopoietic stem cells into cytogenetically distinct frog embryos (diploid-2N or triploid-3N) before the establishment of circulation and overt differentiation and colonization of the thymus. The DNA content of cortical thymocytes and circulating erythrocytes was quantified by staining with propidium iodide and measuring the amount of red fluorescence emitted by individual nuclei with the use of flow cytometry. Accessory cells from thymic medulla were separated by incubating for 2 hr on glass slides. For comparison, the developmental history of peritoneal macrophages was examined as representative, myeloid-derived phagocytic cells. DNA content of adherent cells was quantified by staining with the DNA-specific Feulgen reaction and measuring light absorption of individual nuclei by microdensitometry. Thymic accessory cells were subdivided into phagocytic and nonphagocytic phenotypes on the basis of latex bead ingestion. Phagocytic cells in the thymus were usually nonspecific esterase positive and phenotypically resembled peritoneal macrophages. Nonphagocytic cells from the thymus were usually esterase negative and had a dendritic morphology characterized by branched cytoplasmic extensions. Nonphagocytic cells were positive for cytoplasmic RNA based on staining with methyl green-pyronin Y. Phagocytic cells from both the thymus and the peritoneal cavity had no levels of cytoplasmic RNA detectable by this method. Analysis of the embryonic derivation of thymic accessory cells, based on the proportion of cells carrying the cytogenetic marker, demonstrated that thymic lymphocytes and thymic accessory cells were a concordant pair of cells, distinct from myeloid-derived erythrocytes and possibly macrophages. These experiments provide circumstantial evidence suggesting thymocytes and thymic accessory cells could arise from a bipotential precursor that diverges into these separate lineages after colonization of the epithelial thymic rudiment during early development.  相似文献   

5.
Cortisone-resistant (CR) thymocytes did not generate cytolytic activity toward H-2 K or D alloantigen unless they were also stimulated by H-2 I or non-H-2 alloantigens, even though spleen cells generated brisk cytolytic activity toward H-2 K or D alone. Backstimulation by stimulating strain T lymphocytes accounted for neither the response of spleen cells toward H-2 K or D alloantigen nor the response of CR thymocytes to a full set of alloantigens. In addition, lack of non-T accessory cells did not account for the CR thymocyte pattern of reactivity. Rather, CR thymocytes appeared to be relatively deficient in helper T lymphocytes (HTL). CR thymocytes generated specific cytolytic activity toward H-2 D alloantigen when T cell growth factors (TCGF) or cloned alloreactive helper T lymphocytes were added to culture. CR thymocytes contained fewer HTL precursors detected at limit dilution than spleen cells did. Thus spleen cells generated cytolytic activity toward class I alloantigens alone, but under the same culture conditions CR thymocytes had to be stimulated by both class I and class II alloantigens. Class II alloantigens may be required to stimulate cytolytic activity only under culture conditions in which class I-reactive HTL are not sufficient to provide a minimal threshold of help.  相似文献   

6.
吴金英  林浩然 《动物学报》2008,54(2):342-355
本文通过解剖及组织切片技术、光学显微镜、透射和扫描电子显微镜技术,对斜带石斑鱼(Epinephelus coioides)胸腺器官组织进行了观察研究。结果表明:斜带石斑鱼胸腺实质主要由胸腺细胞(淋巴细胞)和网状上皮细胞构成。鱼体从Ⅰ龄之后,其胸腺发生明显的变化,与幼鱼有所不同,主要是胸腺可明显区分为三个区域:胸腺外皮质区、内皮质区和髓质区。外皮质区主要由网状上皮细胞、黏液细胞、成纤维细胞和少量淋巴细胞构成,细胞排列疏松;内皮质区主要由密集的淋巴细胞和网状上皮细胞组成,以含有大量的淋巴细胞为特征;髓质区主要由淋巴细胞和较多的网状上皮细胞构成,总体特征是淋巴细胞数量比内皮质区的少,且细胞排列较疏松。外皮质区、内皮质区相当于高等脊椎动物的皮质;髓质区相当于高等脊椎动物的髓质。髓质区之下有结缔组织,在Ⅱ龄以上的成体出现胸腺小体(Hassall's corpuscles)或类似胸腺小体的结构,而且随着年龄的增加,胸腺外皮质区增厚,结缔组织增加,还表现在内皮质区和髓质区组织逐渐萎缩变薄,胸腺的细胞组成类型和淋巴细胞数量上有所变化等等。这些现象在Ⅱ龄鱼开始出现,即胸腺呈现退化迹象,在Ⅲ龄以上鱼体呈现明显的退化和萎缩。胸腺表面扫描电镜结果表明:其上皮细胞表面具有微嵴以及由微嵴组成的指纹状结构,有一些微孔分布。透射和断面扫描电镜的结果进一步表明:胸腺组织内的细胞成分复杂,除了淋巴细胞和网状上皮细胞外,还具有巨噬细胞、肥大细胞、肌样细胞、浆细胞、指状镶嵌细胞和纤维细胞等。  相似文献   

7.
Some metabolic parameters of thymocytes of noninbred female rats were evaluated by quantitative histochemistry during the estrous cycle. There were cyclic variations in the activity of NAD . H and NADP H-diaphorases as well as in the content of DNA and RNA in thymocytes of all parts of the thymus. The greatest range of variations in the content of nucleic acids was recorded in thymocytes of medulla. The activity of acid phosphatase in thymocytes remained unchanged over the period of the estrous cycle.  相似文献   

8.
Summary Spleen, cervical lymph node and thymus of guinea pigs, half day, three weeks and nine months of age were investigated in fluorescent light after staining with acridine orange. Four varieties of lymphocytes have been found as differentiated presumably by the color of DNA of their nuclei. Two varieties are present in the thymus. The cortical thymocytes differ distinctly in color from those in the medulla. The splenic lymphocytes also display different nuclear color from those which are present in the cervical lymph nodes. The problems of the structure and function of the thymus have been discussed.  相似文献   

9.
T lymphocytes expressing the surface phenotype Lyt-2- L3T4- represent a minor population of immature thymocytes that appear to be the precursors of mature T cells. Cells with the same apparent surface phenotype also accumulate in vast numbers in the lymphoid tissues of the autoimmune lpr mouse. Lyt-2- L3T4- T lymphocytes from lpr lymph node (LN) or normal thymus express low to undetectable levels, respectively, of surface antigen receptor. In addition, they produce reduced amounts of lymphokines compared with normal T cells and lack precursors of alloantigen-specific cytolytic T lymphocytes. We previously showed that after culture with phorbol esters and interleukin 2, lpr Lyt-2- L3T4- T lymphocytes proliferate and differentiate, acquiring increased levels of surface antigen receptor by most cells, as well as Lyt-2 by a portion. We now show that cultured Lyt-2- L3T4- T cells from lpr LN or normal thymus are very efficiently cytolytic toward not only allogeneic tumor targets, but also natural killer (NK)-susceptible targets and syngeneic targets. Such killing was not inhibited by antibodies to H-2 or Lyt-2. In contrast, cultured mature Lyt-2+ L3T4- T cells from normal LN, thymus, or lpr LN were cytolytic only toward allogeneic targets and were dependent on Lyt-2 expression and H-2 recognition. The similarities of cultured Lyt-2- L3T4- T cells to NK and lymphokine-activated killer cells are discussed.  相似文献   

10.
Guinea pig thymocytes were incubated with normal rabbit serum, which resulted in the death of a great majority of the cells. The remaining rabbit serum-resistant cells, representing less than 10% of the thymocytes, contained euchromatic DNA and were of intermediate size and low density. Functional tests indicated that they were enriched in immunologically mature cells, which responded to the mitogenic lectins phytohemagglutinin and concanavalin A, and were depleted of immature, spontaneously proliferating cells and in cells responding to the thymocyte growth peptide. The described procedure for enrichment of immunologically mature thymus cells in guinea pigs may become useful since glucocorticoid treatment, used in mice for enrichment of mature thymocytes, cannot be used for this purpose in guinea pigs.  相似文献   

11.
The present paper reports the distribution of lymphoid and non-lymphoid cell types in the thymus of mice. To this purpose, we employed scanning electron microscopy and immunohistology. For immunohistology we used the immunoperoxidase method and incubated frozen sections of the thymus with 1) monoclonal antibodies detecting cell-surface-differentiation antigens on lymphoid cells, such as Thy-1, T-200, Lyt-1, Lyt-2, and MEL-14; 2) monoclonal antibodies detecting the major histocompatibility (MHC) antigens, H-2K, I-A, I-E, and H-2D; and 3) monoclonal antibodies directed against cell-surface antigens associated with cells of the mononuclear phagocyte system, such as Mac-1, Mac-2, and Mac-3. The results of this study indicate that subsets of T lymphocytes are not randomly distributed throughout the thymic parenchyma; rather they are localized in discrete domains. Two major and four minor subpopulations of thymocytes can be detected in frozen sections of the thymus: 1) the majority of cortical thymocytes are strongly Thy-1+ (positive), strongly T-200+, variable in Lyt-1 expression, and strongly Lyt-2+; 2) the majority of medullary thymocytes are weakly Thy-1+, strongly T-200+, strongly Lyt-1+, and Lyt-2- (negative); 3) a minority of medullary cells are weakly Thy-1+, T-200+, strongly Lyt-1+, and strongly Lyt-2+; 4) a small subpopulation of subcapsular lymphoblasts is Thy-1+, T-200+, and negative for the expression of Lyt-1 and Lyt-2 antigens; 5) a small subpopulation of subcapsular lymphoblasts is only Thy-1+ but T-200- and Lyt-; and 6) a small subpopulation of subcapsular lymphoblasts is negative for all antisera tested. Surprisingly, a few individual cells in the thymic cortex, but not in the medulla, react with antibodies directed to MEL-14, a receptor involved in the homing of lymphocytes in peripheral lymphoid organs. MHC antigens (I-A, I-E, H-2K) are mainly expressed on stromal cells in the thymus, as well as on medullary thymocytes. H-2D is also expressed at a low density on cortical thymocytes. In general, anti-MHC antibodies reveal epithelial-reticular cells in the thymic cortex, in a fine dendritic staining pattern. In the medulla, the labeling pattern is more confluent and most probably associated with bone-marrow-derived interdigitating reticular cells and medullary thymocytes. We discuss the distribution of the various lymphoid and non-lymphoid subpopulations within the thymic parenchyma in relation to recently published data on the differentiation of T lymphocytes.  相似文献   

12.
Summary Elemental concentrations of rat thymocytes in vivo were studied by X-ray microanalysis of freeze-dried sections. Cells from different regions, the subcapsular zone, the cortex and the medulla were studied in thymic tissue from a number of animals. Generally thymocytes situated in the medulla had higher concentrations of K compared to those in the subcapsular zone. The concentration of Na in the nucleus was constant in the medulla in all animals but some variation in this element was seen between animals in the subcapsular zone. The distribution of K/Na ratio in individual thymocytes was different in each region of the thymus. Cells with low K/Na ratio (<5) were predominant in the subcapsular zone, whereas cells with higher values for K/Na ratio were found in the cortex and medulla. The subcapsular zone is the region where mitotic cells are mostly situated. The finding of thymocytes with higher concentrations of Na and low K/Na ratios in this region is in accord with in vitro studies on thymocyte stimulation.  相似文献   

13.
Prothymocytes were obtained from regenerating thymuses of intrathymic-irradiated, bone marrow-shielded rats. In contrast to cortical thymocytes, which are small nondividing cells containing nuclear TdT, prothymocytes are characterized by their large size, high mitotic activity, lack of natural attachment, absence of PNA-binding capacity, nonexpression of membranal thymic specific antigens, and absence of nuclear TdT. In addition, these cells are capable of responding to the mitogens Con-A and PHA, and are sensitive to in vitro lysis by physiologic concentrations of corticosterone and cortisol. Prothymocytes incubated for 3 days on thymic monolayers differentiated into small lymphocytes expressing cortical thymocyte characteristics. Light and electron microscopy studies demonstrated the infiltration of prothymocytes from the circulation via the thymic blood vessel wall into the perivascular sinuses. Prothymocytes isolated from the thymuses, however, did not exhibit specific "homing" to the thymus when transfused back into the animals. In view of the observed accelerated thymic repopulation in adrenalectomized rats, and the high in vitro glucocorticoid sensitivity of the prothymocytes, it is suggested that thymic homeostasis is regulated by specific effect of adrenocortical hormones on the prothymocyte subset.  相似文献   

14.
No correlation between the sensitivity of thymocytes to glucocorticoids and the number of glucocorticoid receptors has been revealed in studies carried out in vivo and in vitro. The micromedium of the thymus has been found capable of accumulating glucocorticoid hormones.  相似文献   

15.
The monoclonal antibody MEL-14 recognizes a lymphocyte surface structure (the MEL-14 antigen) involved in migration of lymphocytes into lymph nodes. Its use as a maturation marker for T cells within the thymus led to the view that a small population (1 to 2%) of MEL-14high thymocytes located in the inner cortex represented fully mature cells about to exit as thymus emigrants. The medulla, in this view, contained only the phenotypically mature but MEL-14low cells, and was not the source of thymus emigrants. The data we present, derived from flow-cytometric analysis of suspension-stained CBA mouse thymocytes, is not in accordance with this view. A high proportion (approximately 20%) of thymocytes express relatively high levels of MEL-14; these include some immature Ly-2- L3T4- and nonmature Ly-2+ L3T4+ thymocytes. Among the 12 to 14% thymocytes of mature phenotype (PNAlow or H-2Khigh or Ly-2+ L3T4- and Ly-2- L3T4+), more than half express relatively high levels of MEL-14. The mature phenotype and MEL-14moderate-to-high cells (8% of thymocytes) appear too numerous to account for the few percent MEL-14high cells seen in the cortex in frozen sections, and the mature phenotype but MEL-14low cells (2 to 3% of thymocytes) too few to fill the medulla; however, both together account numerically for the medullary population. By section staining, the medulla contains Ly-2- L3T4+ and Ly-2+ L3T4- cells in a characteristic 2:1 ratio; by suspension staining this ratio agrees with that of the total mature phenotype population, but not with that of the MEL-14low subset previously claimed to represent medullary cells. Another paradox is apparent when suspension staining and section staining are compared: suspension staining reveals that many mature phenotype cells coexpress high levels of both MEL-14 and H-2K, yet section staining reveals H-2Khigh cells in the medulla but not in the inner cortex, and reveals scattered MEL-14high cells throughout the cortex but not in the medulla. We suggest that section staining for MEL-14 fails to locate the mature cells that stain for MEL-14 in suspension; the few MEL-14high cells localized in both the inner and the outer cortex on section staining are predominantly immature Ly-2- L3T4- and nonmature Ly-2+ L3T4+ thymocytes; the majority of thymocytes of mature phenotype, whether MEL-14high or MEL-14low on suspension staining, are of medullary location; the medulla is the most likely immediate source of thymic emigrants.  相似文献   

16.
RU 38486, a newly synthesized molecule, reversed glucocorticoid mediated enzyme induction and gluconeogenesis in the liver, and RNA synthesis in rat thymocytes. The transfer of radiolabelled dexamethasone from the cytoplasm to the nucleus was also opposed by RU 38486 in intact thymocytes. Although RU 38486 saturated the same molecular species of the receptor as the hormone in the liver, differences seemed to appear when thymus was taken into account. Along with the ongoing clinical trials, an important new tool thus appears at hand to understand and harness the molecular action of glucocorticoid hormones in mammalian systems.  相似文献   

17.
The thymus exports a selected subset of virgin T lymphocytes to the peripheral lymphoid organs. The mature phenotype of these thymus emigrants is similar to that of medullary thymocytes and has been cited as supporting a medullary rather than cortical exit site. Using the monoclonal antibody MEL-14, we identify a 1%-3% subpopulation of thymocytes that expresses high levels of a receptor molecule involved in lymphocyte homing to peripheral lymph nodes. We present evidence that these rare MEL-14hi thymocytes are predominantly of mature phenotype and represent the major source of thymus emigrants. Surprisingly, MEL-14hi thymocytes are exclusively cortical in location, although their mature phenotype may allow them to masquerade as medullary cells in conventional studies. We also demonstrate that unlike medullary thymocytes, many cortisone-resistant thymocytes (CRT) are MEL-14hi. Thus, in contrast to current dogma, CRT do not represent a sample of medullary thymocytes as they are found in situ and their level of immunocompetence does not necessarily reflect that of the medullary population. Our findings refute the hypothesis that phenotypically and functionally mature cells are restricted to the medulla, and support our proposition that most thymus emigrants are derived from the MEL-14hi cortical subset.  相似文献   

18.
In a previous report, we describe the existence of an effect of ovarian steroids on the adrenal medulla activities of the enzymes involved in catecholamine (CA) catabolism. To complete that study, we have now examined the adrenal medulla activity of tyrosine hydroxylase (TH), the rate limiting enzyme of the CA synthesis, as well as the in vitro release of CAs from incubated adrenal medullas. The study has been performed with adrenal medullas from female rats with physiological (estrous cycle) or pharmacological (steroid treatment) alterations in their circulating levels of estrogens and progesterone. The in vitro release of CAs from incubated adrenal medullas of estradiol-treated rats was lower than that obtained in vehicle-treated animals. In consequence, the preovulatory increase of estradiol would be the responsible of the low in vitro release of CAs observed during the estrous phase of ovarian cycle. However, this steroid does not seem to affect the CA synthesis, since the adrenal medulla activity of TH was not altered after the estradiol treatment nor during the estrous cycle. On the contrary, progesterone treatment increased TH activity 24 h after the steroid injection. This effect was independent of estradiol. However, an estrogen-dependent increase in TH activity occurred short-time after the steroid administration. Although progesterone by itself failed to modify the in vitro release of both CAs, it was able to reverse the estradiol-induced decrease in epinephrine release. In summary, estradiol seems to decrease the ability of the adrenal medulla to release CAs to the peripheral blood, without affecting the CA synthesis, whereas progesterone mostly affects TH activity, being its effects temporary and partially depending on estrogens.  相似文献   

19.
Antibodies specific for the CD3 complex have the capacity to both stimulate and inhibit a variety of T cell functions. We show here that a monoclonal antibody to the epsilon chain of CD3 can induce efficient non-MHC-restricted cytolytic activity in murine lymphocytes with peak activity occurring after 48 hr of incubation. In a panel of targets, the anti-CD3-activated effectors lysed tumor cells but not normal lymphoblasts. Cytolysis was not dependent on the presence of the antibody in the cytolytic assay. Moderate to high cytolytic activity was elicited from lymph nodes, spleen, and thymus by anti-CD3 treatment in vitro, whereas only low activity was apparent in bone marrow. The precursors of anti-CD3-activated cells consisted largely of mature T cells, although a smaller component of immature T cells was also involved. Thus, separation of thymocytes based on adhesion to peanut agglutinin revealed that both positive (immature) and negative (mature) fractions could be activated, while cytotoxic pretreatment of spleen cells with an antibody (J11d) to immature T cells before anti-CD3 activation significantly decreased the resulting cytotoxicity. The majority of precursors in spleen were Thy 1+ and CD8+ and/or AGM1+. Antibody depletion studies showed that the effector cells have both a T and a NK component consisting of Thy 1+, CD5+, CD8+, CD4-, and AGM1- cells and Thy 1-, CD5-, CD8-, CD4-, and AGM1+ cells, respectively. The production of significant amounts of IL-2 and TNF in culture following anti-CD3 treatment, along with the synergistic effect of exogenously added IL-2, suggests that one or both of the effector cell types could be induced by lymphokines. The intraperitoneal administration of the anti-CD3 antibody induces cytolytic activity in vivo. Therefore, the direct activation of cytolysis by anti-CD3 antibody and the additional effects, both direct and synergistic, of lymphokines produced by the activated lymphocytes could conceivably provide a potent anti-tumor therapy.  相似文献   

20.
The NKH1 Ag is expressed on all cells in human peripheral blood capable of mediating spontaneous non-MHC restricted cytolytic function (i.e., natural killing). The majority of NK cells do not express CD3 Ag and do not express TCR gene products. However, approximately 20 to 25% of NKH1+ cells coexpress CD3 and TCR proteins. Both NKH1+CD3+ and NKH1+CD3- effectors can proliferate in response to IL-2 which also results in enhancement of cytolytic function. In the present studies, we examined thymocytes after incubation with rIL-2 for the presence of NKH1+ cells and for the development of non-MHC restricted cytolytic function. NKH1+ cells and NK activity could not be detected in fresh thymus. After culture with rIL-2 only, NK activity appeared in 3 days, reached a maximum after 7 days, and was effective against a panel of NK-sensitive targets. NK activity was correlated with the expression of NKH1 on the surface of in vitro proliferating thymocytes and immunofluorescent cell sorting demonstrated that almost all cytolytic activity was mediated by NKH1+ cells. As expected given the thymic origin of these cells, the majority of NKH1+ cells in culture expressed CD3. However, all cultures contained NKH1+CD3- effector cells which represent 15 to 40% of the NKH1+ population. As in peripheral blood, both NKH1+CD3- and NKH1+CD3+ exhibited non-MHC-restricted cytotoxicity, but only CD3+ effectors could be inhibited by anti-T3 mAb. These findings demonstrate that rIL-2 alone can induce subpopulations of thymocytes to proliferate, to express the NKH1 marker and become NK active in vitro. Furthermore, they suggest that the thymus which plays a role in the differentiation of NKH1+CD3+ NK effectors may also play a role in the differentiation or maturation of NKH1+CD3- NK effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号