首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colicin E5 is a novel Escherichia coli ribonuclease that specifically cleaves the anticodons of tRNATyr, tRNAHis, tRNAAsn and tRNAAsp. Since this activity is confined to its 115 amino acid long C-terminal domain (CRD), the recognition mechanism of E5-CRD is of great interest. The four tRNA substrates share the unique sequence UQU within their anticodon loops, and are cleaved between Q (modified base of G) and 3′ U. Synthetic minihelix RNAs corresponding to the substrate tRNAs were completely susceptible to E5-CRD and were cleaved in the same manner as the authentic tRNAs. The specificity determinant for E5-CRD was YGUN at −1 to +3 of the ‘anticodon’. The YGU is absolutely required and the extent of susceptibility of minihelices depends on N (third letter of the anticodon) in the order A > C > G > U accounting for the order of susceptibility tRNATyr > tRNAAsp > tRNAHis, tRNAAsn. Contrastingly, we showed that GpUp is the minimal substrate strictly retaining specificity to E5-CRD. The effect of contiguous nucleotides is inconsistent between the loop and linear RNAs, suggesting that nucleotide extension on each side of GpUp introduces a structural constraint, which is reduced by a specific loop structure formation that includes a 5′ pyrimidine and 3′ A.  相似文献   

2.
Lin YL  Elias Y  Huang RH 《Biochemistry》2005,44(31):10494-10500
Colicin E5 specifically cleaves four tRNAs in Escherichia coli that contain the modified nucleotide queuosine (Q) at the wobble position, thereby preventing protein synthesis and ultimately resulting in cell death. Here, the crystal structure of the catalytic domain of colicin E5 (E5-CRD) from E. coli was determined at 1.5 A resolution. Unexpectedly, E5-CRD adopts a core folding with a four-stranded beta-sheet packed against an alpha-helix, seen in the well-studied ribonuclease T1 despite a lack of sequence similarity. Beyond the core catalytic domain, an N-terminal helix, a C-terminal beta-strand and loop, and an extended internal loop constitute an RNA binding cleft. Mutational analysis identified five amino acids that were important for tRNA substrate binding and cleavage by E5-CRD. The structure, together with the mutational study, allows us to propose a model of colicin E5-tRNA interactions, suggesting the molecular basis of tRNA substrate recognition and the mechanism of tRNA cleavage by colicin E5.  相似文献   

3.
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.  相似文献   

4.
Tok JB  Cho J  Rando RR 《Nucleic acids research》2000,28(15):2902-2910
RNA–RNA recognition is a critical process in controlling many key biological events, such as translation and ribozyme functions. The recognition process governing RNA–RNA interactions can involve complementary Watson–Crick (WC) base pair binding, or can involve binding through tertiary structural interaction. Hence, it is of interest to determine which of the RNA–RNA binding events might emerge through an in vitro selection process. The A-site of the 16S rRNA decoding region was chosen as the target, both because it possesses several different RNA structural motifs, and because it is the rRNA site where codon/anticodon recognition occurs requiring recognition of both mRNA and tRNA. It is shown here that a single family of RNA molecules can be readily selected from two different sizes of RNA library. The tightest binding aptamer to the A-site 16S rRNA construct, 109.2-3, has its consensus sequences confined to a stem–loop region, which contains three nucleotides complementary to three of the four nucleotides in the stem–loop region of the A-site 16S rRNA. Point mutations on each of the three nucleotides on the stem–loop of the aptamer abolish its binding capacity. These studies suggest that the RNA aptamer 109.2-3 interacts with the simple 27 nt A-site decoding region of 16S rRNA through their respective stem–loops. The most probable mode of interaction is through complementary WC base pairing, commonly referred to as a loop–loop ‘kissing’ motif. High affinity binding to the other structural motifs in the decoding region were not observed.  相似文献   

5.
A hypothetical evolutionary pathway from a ribozyme to a catalytic RNA–protein complex (RNP) is proposed and examined. In this hypothesis for an early phase of molecular evolution, one RNA–RNA interaction in the starting ribozyme is replaced with an RNA–protein interaction via two intermediary stages. At each stage, the original RNA–RNA interaction and a newly introduced RNA–protein interaction are designed to coexist. The catalytic RNPs corresponding to the intermediary stages were constructed by employing the Tetrahymena ribozyme together with molecular modeling. Analyses of the RNPs indicate that the protein can fully replace the original role of the RNA–RNA interaction in the starting ribozyme and that the association of a protein with a ribozyme might be beneficial for improving the ribozymatic activity.  相似文献   

6.
7.
Base insertion mutations in the anticodons of two different Escherichia coli tRNAs have been isolated that allow suppression of a series of +1 frameshift mutations. Insertion of a U between positions 34 and 35 of tRNAGln1 or addition of a G between positions 36 and 37 of tRNA(Lys) expand the anticodons of both tRNAs similarly to 3'-GUUU(-5') and allow decoding of complementary 5'-CAAA(-3') quadruplets. Analysis of the suppressed mRNA sequences suggests that suppression occurs by pairing of the expanded anticodons to all four bases of the complementary, quadruplet codon. The tRNA Gln mutants are identical to the sufG class of frameshift suppressors isolated both in Salmonella enterica serovar Typhimurium and E. coli by Kohno and Roth and previously thought to affect tRNA(Lys).  相似文献   

8.
RNA–protein interactions are the structural and functional basis of significant numbers of RNA molecules. RNA–protein interaction assays though, still mainly depend on biochemical tests in vitro. Here, we establish a convenient and reliable RNA fluorescent three-hybrid (rF3H) method to detect/interrogate the interactions between RNAs and proteins in cells. A GFP tagged highly specific RNA trap is constructed to anchor the RNA of interest to an artificial or natural subcellular structure, and RNA–protein interactions can be detected and visualized by the enrichment of RNA binding proteins (RBPs) at these structures. Different RNA trapping systems are developed and detection of RNA–protein complexes at multiple subcellular structures are assayed. With this new toolset, interactions between proteins and mRNA or noncoding RNAs are characterized, including the interaction between a long noncoding RNA and an epigenetic modulator. Our approach provides a flexible and reliable method for the characterization of RNA–protein interactions in living cells.  相似文献   

9.
A set of >300 nonredundant high-resolution RNA–protein complexes were rigorously searched for π-contacts between an amino acid side chain (W, H, F, Y, R, E and D) and an RNA nucleobase (denoted π–π interaction) or ribose moiety (denoted sugar–π). The resulting dataset of >1500 RNA–protein π-contacts were visually inspected and classified based on the interaction type, and amino acids and RNA components involved. More than 80% of structures searched contained at least one RNA–protein π-interaction, with π–π contacts making up 59% of the identified interactions. RNA–protein π–π and sugar–π contacts exhibit a range in the RNA and protein components involved, relative monomer orientations and quantum mechanically predicted binding energies. Interestingly, π–π and sugar–π interactions occur more frequently with RNA (4.8 contacts/structure) than DNA (2.6). Moreover, the maximum stability is greater for RNA–protein contacts than DNA–protein interactions. In addition to highlighting distinct differences between RNA and DNA–protein binding, this work has generated the largest dataset of RNA–protein π-interactions to date, thereby underscoring that RNA–protein π-contacts are ubiquitous in nature, and key to the stability and function of RNA–protein complexes.  相似文献   

10.
Trl1 is an essential 827 amino acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two domains—an N-terminal ligase component and a C-terminal 5′-kinase/2′,3′-cyclic phosphodiesterase (CPD) component—that can function in tRNA splicing in vivo when expressed as separate polypeptides. To understand the structural requirements for the kinase-CPD domain, we performed an alanine scan of 30 amino acids that are conserved in Trl1 homologs from other fungi. We thereby identified four residues (Arg463, His515, Thr675 and Glu741) as essential for activity in vivo. Structure–function relationships at these positions, and at four essential or conditionally essential residues defined previously (Asp425, Arg511, His673 and His777), were clarified by introducing conservative substitutions. Biochemical analysis showed that lethal mutations of Asp425, Arg463, Arg511 and His515 in the kinase module abolished polynucleotide kinase activity in vitro. We report that a recently cloned 1104 amino acid Arabidopsis RNA ligase functions in lieu of yeast Trl1 in vivo and identify essential side chains in the ligase, kinase and CPD modules of the plant enzyme. The plant ligase, like yeast Trl1 but unlike T4 RNA ligase 1, requires a 2′-PO4 end for tRNA splicing in vivo.  相似文献   

11.
The tRNA:m22G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N2,N2-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)—containing N-terminal domain [1–152] and C-terminal catalytic domain [157–329] were assessed by trypsin limited proteolysis. An inter-domain flexible region of at least six residues was revealed. The N-terminal domain was then produced as a standalone protein (THUMPα) and further characterized. This autonomously folded unit exhibits very low affinity for tRNA. Using protein fold-recognition (FR) methods, we identified the similarity between THUMPα and a putative RNA-recognition module observed in the crystal structure of another THUMP-containing protein (ThiI thiolase of Bacillus anthracis). A comparative model of THUMPα structure was generated, which fulfills experimentally defined restraints, i.e. chemical modification of surface exposed residues assessed by mass spectrometry, and identification of an intramolecular disulfide bridge. A model of the whole PAB1283 enzyme docked onto its tRNAAsp substrate suggests that the THUMP module specifically takes support on the co-axially stacked helices of T-arm and acceptor stem of tRNA and, together with the catalytic domain, screw-clamp structured tRNA. We propose that this mode of interactions may be common to other THUMP-containing enzymes that specifically modify nucleotides in the 3D-core of tRNA.  相似文献   

12.
We analyze the protein–RNA interfaces in 81 transient binary complexes taken from the Protein Data Bank. Those with tRNA or duplex RNA are larger than with single-stranded RNA, and comparable in size to protein–DNA interfaces. The protein side bears a strong positive electrostatic potential and resembles protein–DNA interfaces in its amino acid composition. On the RNA side, the phosphate contributes less, and the sugar much more, to the interaction than in protein–DNA complexes. On average, protein–RNA interfaces contain 20 hydrogen bonds, 7 that involve the phosphates, 5 the sugar 2′OH, and 6 the bases, and 32 water molecules. The average H-bond density per unit buried surface area is less with tRNA or single-stranded RNA than with duplex RNA. The atomic packing is also less compact in interfaces with tRNA. On the protein side, the main chain NH and Arg/Lys side chains account for nearly half of all H-bonds to RNA; the main chain CO and side chain acceptor groups, for a quarter. The 2′OH is a major player in protein–RNA recognition, and shape complementarity an important determinant, whereas electrostatics and direct base–protein interactions play a lesser part than in protein–DNA recognition.  相似文献   

13.
Import of nucleus-encoded tRNAs into the mitochondria of the kinetoplastid protozoon Leishmania involves recognition of specific import signals by the membrane-bound import machinery. Multiple signals on different tRNA domains may be present, and further, importable RNAs interact positively (Type I) or negatively (Type II) with one another at the inner membrane in vitro. By co-transfection assays, it is shown here that tRNATyr (Type I) transiently stimulates the rate of entry of tRNAIle (Type II) into Leishmania mitochondria in transfected cells, and conversely, is inhibited by tRNAIle. Truncation and mutagenesis experiments led to the co-localization of the effector and import activities of tRNATyr to the D domain, and those of tRNAIle to the variable region–T domain (V-T region), indicating that both activities originate from a single RNA–receptor interaction. A third tRNA, human tRNALys, is imported into Leishmania mitochondria in vitro as well as in vivo. This tRNA has Type I and Type II motifs in the D domain and the V-T region, respectively, and shows both Type I and Type II effector activities. Such dual-type tRNAs may interact simultaneously with the Type I and Type II binding sites of the inner membrane import machinery.  相似文献   

14.
Unusual anticodon loop structure found in E.coli lysine tRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.  相似文献   

15.
16.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease cleaves its natural substrate 5' to the wobble base, yielding 2',3'-cyclic phosphate termini. Previous work has implicated the anticodon of tRNA(Lys) as a specificity element and a cluster of amino acid residues at the carboxy-proximal half of PrrC in its recognition. We further examined these assumptions by assaying unmodified and hypomodified derivatives of tRNA(Lys) as substrates of wild-type and mutant alleles of PrrC. The data show, first, that the anticodon sequence and wobble base modifications of tRNA(Lys) play major roles in the interaction with anticodon nuclease. Secondly, a specific contact between the substrate recognition site of PrrC and the tRNA(Lys) wobble base is revealed by PrrC missense mutations that suppress the inhibitory effects of wobble base modification mutations. Thirdly, the data distinguish between the anticodon recognition mechanisms of PrrC and lysyl-tRNA synthetase.  相似文献   

17.
In this study we describe a novel method to investigate the RNA–RNA interactions between a small RNA and its target that we termed ‘RNA walk’. The method is based on UV-induced AMT cross-linking in vivo followed by affinity selection of the hybrid molecules and mapping the intermolecular adducts by RT–PCR or real-time PCR. Domains carrying the cross-linked adducts fail to efficiently amplify by PCR compared with non-cross-linked domains. This method was calibrated and used to study the interaction between a special tRNA-like molecule (sRNA-85) that is part of the trypanosome signal recognition particle (SRP) complex and the ribosome. Four contact sites between sRNA-85 and rRNA were identified by ‘RNA walk’ and were further fine-mapped by primer extension. Two of the contact sites are expected; one contact site mimics the interaction of the mammalian Alu domain of SRP with the ribosome and the other contact sites include a canonical tRNA interaction. The two other cross-linked sites could not be predicted. We propose that ‘RNA walk, is a generic method to map target RNA small RNAs interactions in vivo.  相似文献   

18.
19.
Aminoacylation of a transfer RNA (tRNA) by its cognate aminoacyl-tRNA synthetase relies upon the recognition of specific nucleotides as well as conformational features within the tRNA by the synthetase. In Escherichia coli, the aminoacylation of tRNA(His) by histidyl-tRNA synthetase (HisRS) is highly dependent upon the recognition of the unique G-1:C73 base pair and the 5'-monophosphate. This work investigates the RNA-protein interactions between the HisRS active site and these critical recognition elements. A homology model of the tRNA(His)-HisRS complex was generated and used to design site-specific mutants of possible G-1:C73 contacts. Aminoacylation assays were performed with these HisRS mutants and N-1:C73 tRNA(His) and microhelix(His) variants. Complete suppression of the negative effect of 5'-phosphate deletion by R123A HisRS, as well as the increased discrimination of Q118E HisRS against a 5'-triphosphate, suggests a possible interaction between the 5'-phosphate and active-site residues Arg123 and Gln118 in which these residues create a sterically and electrostatically favorable pocket for the binding of the negatively charged phosphate group. Additionally, a network of interactions appears likely between G-1 and Arg116, Arg123, and Gln118 because mutation of these residues significantly reduced the sensitivity of HisRS to changes at G-1. Our studies also support an interaction previously proposed between Gln118 and C73. Defining the RNA-protein interactions critical for efficient aminoacylation by E. coli HisRS helps to further characterize the active site of this enzyme and improves our understanding of how the unique identity elements in the acceptor stem of tRNA(His) confer specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号