首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of changes in Cl concentration in the external and/or serosal bath on Cl transport across short-circuited frog skin was studied by measurements of transepithelial Cl influx (J 13 Cl ) and efflux (J 31 Cl ), short-circuit current, transepithelial potential, and conductance (G m).J 13 Cl as well asJ 31 Cl were found to have a saturating component and a component which is apparently linear with Cl concentration. The linear component ofJ 31 Cl appears only upon addition of Cl to external medium, and about 3/4 of this component does not contribute toG m. The saturating component ofJ 31 Cl is only 5% of totalJ 31 Cl with 115mm Cl in the serosal medium. Replacement of 115mm Cl in external medium by SO 4 = , NO 3 , HCO 3 or I results in 87–97% reduction ofJ 31 Cl , whereas replacement with Br has no effect. As external Cl concentration is raised in steps from 2 to 115mm,J 13 Cl andJ 31 Cl increase by the same amount butJ 13 Cl is persistently 0.15 eq/cm2 hr larger thanJ 31 Cl . These results indicate that at least 3/4 of linear components ofJ 13 Cl andJ 31 Cl proceed via an exchange diffusion mechanism which seems to be located at the outer cell border. The saturating component ofJ 13 Cl is involved in active Cl transport in an inward direction, and there is evidence suggesting that Cl uptake across outer cell border, which proceeds against an electrochemical gradient, is electroneutral but not directly linked to Na.  相似文献   

2.
Summary Cl transport in apical membrane vesicles derived from bovine tracheal epithelial cells was studied using the Cl-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl) quinolinium. With an inwardly directed 50 mM Cl gradient at 23°C, the initial rate of Cl entry (J Cl) was increased significantly from 0.32±0.12 nmol · sec–1 · mg protein–1 (mean±sem) to 0.50±0.07 nmol · sec–1 · mg protein–1 when membrane potential was changed from 0 to +60 mV with K/valinomycin. At 37°C, with membrane potential clamped at 0 mV, there was a 34±7% (n=5) decrease inJ Cl from a control value of 0.37±0.03 nmol · sec–1 · mg protein–1 upon addition of 0.2mm diphenylamine-2-carboxylate. The following did not alterJ Cl significantly (J Cl values gives as percent change from control): 50mm cis Na (–1±5%), 0.1mm furosemide (–3±4%), 0.1mm furosemide in the presence of 50mm cis Na (–5±2%), 0.1mm H2DIDS (–18±9%), a 1.5 pH unit inwardly directed H gradient (–7±7%), and 0.1mm H2DIDS in the presence of a 1.5 unit pH gradient (4±18%). With inward 50mm anion gradients, the initial rates of Br and I entry (J Br andJ 1, respectively) were not significantly different fromJ Cl.J Cl was a saturable function of Cl concentration with apparentK d of 24mm and apparentV max of 0.54 nmol · sec–1 · mg protein–1. Measurement of the temperature dependence ofJ Cl yielded an activation energy of 5.0 kcal/mol (16–37°C). These results demonstrate that Cl transport in tracheal apical membrane vesicles is voltage-dependent and inhibited by diphenylamine-2-carboxylate. There is no significant contribution from the Na/K/2Cl, Na/Cl, or Cl/OH(H) transporters. The conductive pathway does not discriminate between Cl, Br, and I and is saturable. The low activation energy supports a pore-type mechanism for the conductance.  相似文献   

3.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

4.
Summary The effect of addition of FeCl3 to the media bathing the isolated skin ofRana pipiens was studied by measuring short-circuit current, transepithelial potential, and resistance, and by determining the influx and efflux of sodium (J 13 Na andJ 31 Na , respectively) and the influx and efflux of chloride (J 13 Cl andJ 31 Cl , respectively) across the epithelium. With normal Ringer's solution on both sides of the skin, addition of 10–3 m FeCl3 to the external medium resulted in nearly complete inhibition of active Na transport (J 13 Na decreased from 1.30±0.14 to 0.10±0.04 eq/cm2 hr (N=8)) and in appearance of active chloride transport in outward direction due to an 80% increase inJ 31 Cl . Average (J 31 ClJ 13 Cl ) obtained from means of 8 skins in 6 consecutive control and last 3 experimental periods was –0.17±0.04 and 0.38±0.05 eq/cm2 hr, respectively. FeCl3 added to external medium also induced substantial net chloride movement in outward direction when external medium contained Na-free choline chloride Ringer's or low ionic strength solution. Under the latter condition net Na movement was virtually eliminated by external FeCl3. After addition of FeCl3 to serosal medium there was delayed inhibition ofJ 13 Na but no change in chloride fluxes. Immediate and profound changes in Na and Cl transport systems seen after external application of FeCl3 indicate charge effects of Fe3+ on surface of apical cell membranes, possibly close to or in ion channels.  相似文献   

5.
Summary This study is concerned with the short-circuit current,I sc, responses of the Cl-transporting cells of toad skin submitted to sudden changes of the external Cl concentration. [Cl]0. Sudden changes of [Cl]0, carried out under apical membrane depolarization, allowed comparison of the roles of [Cl]0 and [Cl]cell on the activation of the apical Cl pathways. Equilibration of shortcircuited skins symmetrically in K-Ringer's solutions of different Cl concentrations permitted adjustment of [Cl]cell to different levels. For a given Cl concentration (in the range of 11.7 to 117mm) on both sides of a depolarized apical membrane, this structure exhibits a high Cl permeability,P (Cl)apical. On the other hand, for the same range of [Cl]cell but with [Cl]0=0,P (Cl)apical is reduced to negligible values. These observations indicate that when the apical membrane is depolarizedP (Cl)apical is modulated by [Cl]0; in the absence of external Cl ions, intracellular Cl is not sufficient to activateP (Cl)apical. Computer simulation shows that the fast Cl currents induced across the apical membrane by sudden shifts of [Cl]0 from a control equilibrium value strictly follow the laws of electrodiffusion. For each experimental group, the computer-generatedI sc versus ([Cl]cell–[Cl]0) curve which best fits the experimental data can only be obtained by a unique pair ofP (Cl)apical andR b (resistance of the basolateral membrane), thus allowing the calculation of these parameters. The electrodiffusional behavior of the net Cl flux across the apical membrane supports the channel nature of the apical Cl pathways in the Cl-transporting cell. Cl ions contribute significantly to the overall conductance of the basolateral membrane even in the presence of a high K concentration in the internal solution.  相似文献   

6.
Summary The characteristics of Cl movement across luminal and basolateral membranes ofAmphiuma intestinal absorptive cells were studied using Cl-sensitive microelectrodes and tracer36Cl techniques. Intracellular Cl activity (a Cl i ) was unchanged when serosal Cl was replaced; when luminal Cl was replaced cell Cl was rapidly lost. Accordingly, the steady statea Cl i could be varied by changing the luminal [Cl]. As luminal [Cl] was raised from 1 to 86mM,a Cl i rose in a linear manner, the mucosal membrane hyperpolarized, and the transepithelial voltage became serosa negative. In contrast, the rate of Cl transport from the cell into the serosal medium, measured as the SITS-inhibitable portion of the Cl absorptive flux, attained a maximum whena Cl i reached an apparent value of 17mm, indicating the presence of a saturable, serosal transport step. The stilbeneinsensitive absorptive flux was linear with luminal [Cl], suggestive of a paracellular route of movement. Intracellulara Cl was near electrochemical equilibrium at all but the lowest values of luminal [Cl] after interference produced by other anions was taken into account.a Cl i was unaffected by Na replacement, removal of medium K, or elevation of medium HCO 3 . Mucosae labeled with36Cl lost isotope into both luminal and serosal media at the same rate and from compartments of equal capacity. Lowering luminal [Cl] or addition of theophylline enhanced luminal Cl efflux. It is concluded that a conductive Cl leak pathway is present in the luminal membrane. Serosal transfer is by a saturable, stilbene-inhibitable pathway. Luminal Cl entry appears to be passive, but an electrogenic uptake cannot be discounted.  相似文献   

7.
Summary At low concentration (1mm) of Cl in the outer solution, the influx of chloride through the isolated skin (J 13 Cl ) of the South American frogLeptodactylus ocellatus (L.) seems to be carried by two mechanisms: (i) a passive one that exhibits the characteristics of an exchange diffusion process, and (ii) an active penetration. Studies of the influx and efflux of chloride (J 13 Cl andJ 31 Cl ) indicate, that the presence of a high (107mm) concentration of Cl in the outer solution activates the translocation of this ion through the cells. Studies of the unidirectional flux of Cl across the outer barrier (J 12 Cl ) indicate that Na+ out stimulates the penetration of Cl at this level. Cl out, in turn, stimulates, theJ 12 Na , but this effect is only detected at low concentrations of Na+ out.  相似文献   

8.
Summary Efflux of36Cl from frog sartorius muscles equilibrated in two depolarizing solutions was measured. Cl efflux consists of a component present at low pH and a pH-dependent component which increases as external pH increases.For temperatures between 0 and 20°C, the measured activation energy is 7.5 kcal/mol for Cl efflux at pH 5 and 12.6 kcal/mol for the pH-dependent Cl efflux. The pH-dependent Cl efflux can be described by the relationu=1/(1+10n(pK a -pH)), whereu is the Cl efflux increment obtained on stepping from pH 5 to the test pH, normalized with respect to the increment obtained on stepping from pH 5 to 8.5 or 9.0. For muscles equilibrated in solutions containing 150mm KCl plus 120mm NaCl (internal potential about –15 mV), the apparent pK a is 6.5 at both 0 and 20°C, andn=2.5 for 0°C and 1.5 for 20°C. For muscles equilibrated in solutions containing 7.5mm KCl plus 120mm NaCl (internal potential about –65 mV), the apparent pK a at 0°C is 6.9 andn is 1.5. The voltage dependence of the apparent pK a suggests that the critical pH-sensitive moiety producing the pH-dependent Cl efflux is sensitive to the membrane electric field, while the insensitivity to temperature suggests that the apparent heat of ionization of this moiety is zero. The fact thatn is greater than 1 suggests that cooperativity between pH-sensitive moieties is involved in determining the Cl efflux increment on raising external pH.The histidine-modifying reagent diethylpyrocarbonate (DEPC) applied at pH 6 reduces the pH-dependent Cl efflux according to the relation, efflux=exp(–k·[DEPC]·t), wheret is the exposure time (min) to DEPC at a prepared initial concentration of [DEPC] (mm). At 17°C,k –1=188mm·min. For temperatures between 10 and 23°C,k has an apparent Q10 of 2.5. The Cl efflux inhibitor SCN at a concentration of 20mm substantially retards the reduction of the pH-dependent Cl efflux by DEPC. The findings that the apparent pK a is 6.5 in depolarized muscles, that DEPC eliminates the pH-dependent Cl efflux, and that this action is retarded by SCN supports the notion that protonation of histidine groups associated with Cl channels is the controlling reaction for the pH-dependent Cl efflux.  相似文献   

9.
Summary Cellular impalements were used in combination with standard transepithelial electrical measurements to evaluate some of the determinants of the spontaneous lumen-positive voltage,V e , which attends net Cl absorption,J Cl net , and to assess how ADH might augment bothJ Cl met andV e in the mouse medullary thick ascending limb of Henle microperfusedin vitro. Substituting luminal 5mm Ba++ for 5mm K+ resulted in a tenfold increase in the apical-to-basal membrane resistance ratio,R c /R bl , and increasing luminal K+ from 5 to 50mm in the presence of luminal 10–4 m furosemide resulted in a 53-mV depolarization of apical membrane voltage,V a . Thus K+ accounted for at least 85% of apical membrane conductance. Either with or without ADH. 10–4 m luminal furosemide reducedV e andJ Cl net to near zero values and hyperpolarized bothV a andV bl , the voltage across basolateral membranes; however, the depolarization ofV bl was greater in the presence than in the absence of hormone while the hormone had no significant effect on the depolarization ofV a , Thus ADH-dependent increases inV b were referable to greater depolarizations ofV bl in the presence of ADH than in the absence of ADH 68% of the furosemide-induced hyperpolarization ofV a was referable to a decrease in the K+ current across apical membranes, but, at a minimum, only 19% of the hyperpolarization ofV bl could be accounted for by a furosemide-induced reduction in basolateral membrane Cl current. Thus an increase in intracellular Cl activity may have contributed to the depolarization ofV bl during net Cl absorption, and the intracellular Cl activity was likely greater with ADH than without hormone. Since ADH increases apical K+ conductance and since the chemical driving force for electroneutral Na+,K+,2Cl cotransport from lumen to cell may have been less in the presence of ADH than in the absence of hormone, the cardinal effects of ADH may have been to increase the functional number of both Ba++-sensitive conductance K+ channels and electroneutral Na+,K+,2Cl cotransport units in apical plasma membranes.  相似文献   

10.
Summary Active HCO 3 t- secretion in the anterior rectal salt gland of the mosquito larva,Aedes dorsalis, is mediated by a 11 Cl/HCO 3 exchanger. The cellular mechanisms of HCO 3 and Cl transport are examined using ion- and voltage-sensitive microelectrodes in conjunction with a microperfused preparation which allowed rapid saline changes. Addition of DIDS or acetazolamide to, or removal of CO2 and HCO 3 from, the serosal bath caused large (20 to 50 mV) hyperpolarizations of apical membrane potential (V a) and had little effect on basolateral potential (V bl). Changes in luminal Cl concentration alteredV a in a repid, linear manner with a slope of 42.2 mV/decaloga Cl l –. Intracellular Cl activity was 23.5mm and was approximately 10mm lower than that predicted for a passive distribution across the apical membrane. Changes in serosal Cl concentration had no effect onV bl, indicating an electrically silent basolateral Cl exit step. Intracellular pH in anterior rectal cells was 7.67 and the calculated was 14.4mm. These results show that under control conditions HCO3 enters the anterior rectal cell by an active mechanism against an electrochemical gradient of 77.1 mV and exits the cell at the apical membrane down a favorable electrochemical gradient of 27.6 mV. A tentative cellular model is proposed in which Cl enters the apical membrane of the anterior rectal cells by passive, electrodiffusive movement through a Cl-selective channel, and HCO 3 exits the cell by an active or passive electrogenic transport mechanism. The electrically silent nature of basolateral Cl exit and HCO3 entry, and the effects of serosal addition of the Cl/HCO3 exchange inhibitor, DIDS, on and transepithelial potential (V ic) suggest strongly that the basolateral membrane is the site of a direct coupling between Cl and HCO 3 movements.  相似文献   

11.
Summary Unidirectional fluxes of35SO4 across and into rabbit ileal epithelium were measured under short-circuit conditions, mostly at a medium SO4 concentration of 2.4mm. Unidirectional mucosa (m)-to-serosa (s) ands-to-m fluxes (J ms,J sm) were 0.456 and 0.067 moles hr–1 cm–2, respectively.J ms was 2.7 times higher in distal ileum than in mid-jejunum. Ouabain abolished net SO4 transport (J net) by reducingJ ms. Epinephrine, a stimulus of Cl absorption, had no effect on SO4 fluxes. Theophylline, a stimulus of Cl secretion, reducedJ ms without affectingJ sm, causing a 33% reduction inJ net. Other secretory stimuli (8-Br-cAMP, heat-stable enterotoxin, Ca-ionophore A23187) had similar effects. Replacement of all Cl with gluconate markedly reducedJ net through both a decrease inJ ms and an increase inJ sm. The anion-exchange inhibitor, 4-acetoamido-4-isothiocyano-2,2-sulfonic acid stilbene (SITS), when added to the serosal side, reducedJ ms by 94%, nearly abolishingJ net. SITS also decreasedJ sm by 75%. Mucosal SITS (50 m) was ineffective. 4,4-diisothiocyano-2,2-sulfonic acid stilbene (DIDS) had effects similar to SITS but was less potent. Measurements of initial rates of epithelial uptake from the luminal side (J me) revealed the following: (1)J me is a saturable function of medium concentration with aV max of 0.94 moles hr–1 cm–2 and aK 1/2 of 1.3mm; (2) replacing all Na with choline abolishedJ me; (3) replacing all Cl with gluconate increasedJ me by 40%; (4) serosal SITS had no effect onJ me; and (5) stimuli of Cl secretion had no effect onJ me or increased it slightly. Determination of cell SO4 with35SO4 indicated that, at steady-state, the average mucosal concentration is 1.1 mmoles per liter cell water, less than half the medium concentration. Cell SO4 was increased to 3.0mm by adding SITS to the serosal side. Despite net transport rates greater than 1.4 Eq hr–1 cm–2, neither addition of SO4 to the SO4-free medium nor addition of SITS to SO4-containing medium altered short-circuit current. The results suggest that (1) ileal SO4 absorption consists of Na-coupled influx (symport) across the brush border and Cl-coupled efflux (antiport) across the basolateral membrane; (2) the overall process is electrically neutral; (3) the medium-to-cell Cl concentration difference may provide part of the driving force for net SO4 absorption; and (4) since agents affecting Cl fluxes (both absorptive and secretory) have little effect on SO4 fluxes, the mechanisms for their transcellular transports are under separate regulation.  相似文献   

12.
Summary Internodal cells ofChara australis were made tonoplast-free by replacing the cell sap with EGTA-containing media; then the involvement of internal Cl and K+ in the excitation of the plasmalemma was studied.[Cl] i was drastically decreased by perfusing the cell interior twice with a medium lacking Cl. The lowered [Cl] i was about 0.01mm. Cells with this low [Cl] i generated action potential and showed anN-shapedV–I curve under voltage clamped depolarization like Cl-rich cells containing 13 or 29mm Cl.E m at the peak of the action potential was constant at [Cl] i between 0.01 and 29mm. The possibility that the plasmalemma becomes as permeable to other anions as to Cl during excitation is discussed.At [Cl] i higher than 48mm, cells were inexcitable. When anions were added to the perfusion medium to bring the K+ concentration to 100mm, NO 3 , F, SO 4 2– , acetate, and propionate inhibited the generation of action potentials like Cl, while methane sulfonate, PIPES, and phosphate did not inhibit excitability.The duration of the action potential depended strongly on the intracellular K+ concentration. It decreased as [K+] i (K-methane sulfonate) increased. Increase in [Na+] i (Na-methane sulfonate) also caused its decrease, although this effect was weaker than that of K+. The action of these monovalent cations on the duration of the action potential is the opposite of their action on the membrane from the outside (cf. Shimmen, Kikuyama & Tazawa, 1976,J. Membrane Biol. 30:249).  相似文献   

13.
Summary The effects of bathing solution HCO 3 /CO2 concentrations on baseline cell membrane voltages and resistances were measured inNecturus gallbladder epithelium with conventional intracellular microelectrode techniques. Gallbladders were bathed in either low HCO 3 /CO2 Ringer's solutions (2.4mm HCO 3 /air or 1mm HEPES/air) or a high HCO 3 /CO2 Ringer's (10mm HCO 3 /1% CO2). The principal finding of these studies was that the apical membrane fractional resistance (fR a) was higher in tissues bathed in the 10mm HCO 3 /CO2 Ringer's, averaging 0.87±0.06, whereasfR a averaged 0.63±0.07 and 0.48±0.08 in 2.4mm HCO 3 and 1mm HEPES, respectively. Intraepithelial cable analysis was employed to obtain estimates of the individual apical (R a) and basolateral membrane (R b) resistances in tissues bathed in 10mm HCO 3 /1% CO2 Ringer's. Compared to previous resistance measurements obtained in tissues bathed in a low HCO 3 /CO2 Ringer's, the higher value offR a was found to be due to both an increase inR a and a decrease inR b. The higher values offR a and lower values ofR b confirm the recent observations of others. To ascertain the pathways responsible for these effects, cell membrane voltages were measured during serosal solution K+ and Cl substitutions. The results of these studies suggest that an electrodiffusive Cl transport mechanism exists at the basolateral membrane of tissues bathed in a 10mm HCO 3 /1% CO2 Ringer's, which can explain in part the fall inR b. The above observations are discussed in terms of a stimulatory effect of solution [HCO 3 /PCO2 on transepithelial fluid transport, which results in adaptive changes in the conductive properties of the apical and basolateral membranes.  相似文献   

14.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

15.
Summary Proximal, stripped segments of small intestine from the urodeleAmphiuma were short-circuited in media containing Na+, Cl and HCO 3 . Under these conditions there was a large net absorption of Cl, a small net absorption of Na+ and a residual flux (J Net R ) consistent with HCO 3 secretion. Net Cl absorption correlated with the short-circuit current (I sc); net Na+ absorption correlated negatively withJ Net R . Acetazolamide eliminated theI sc, lowered Cl absorption by 50%, and reduced net Na+ absorption without alteringJ Net R . Benzolamide inhibited theI sc without alteringJ Net R . Benzolamide inhibited theI sc more rapidly when applied on the mucosal surface. Replacement of Na+ or HCO 3 (and CO2) in the media eliminated theI sc, net Cl absorption and the residual flux. Likewise, inclusion of the stilbene SITS in the serosal media eliminated theI sc, net Cl absorption and the residual flux. The cytoplasmic activity of Cl (a ci a ) was determined with single and double-barreled microelectrodes. Thea ci a of villus absorptive cells in normal media was 21.0mm and in excess of that expected on the basis of electrochemical equilibrium of Cl at the mucosal membrane. Active Cl accumulation was also observed in the presence of acetazolamide but was eliminated upon replacement of media Na+ with choline. The mucosal membrane potential was depolarized upon replacement of media Na+. It is concluded that Cl is actively absorbed into intestinal cells ofAmphiuma by an electrogenic process located in the mucosal membrane. Depending on the level of intracellular HCO 3 , accumulated Cl may diffuse passively back into the mucosal media or undergo exchange with bath HCO 3 at the serosal membrane.  相似文献   

16.
Summary The preceding paper [30] shows that transepithelial ileal SO4 transport involves Na-dependent uptake across the ileal brush border, and Cl-dependent efflux across the serosal border. The present study examines more closely the serosal efflux process. Transepithelial mucosa (m)-to-serosa (s) ands-to-m fluxes (J ms,J sm) across rabbit ileal mucosa were determined under short-circuit conditions. SO4 was present at 0.22mm. In standard Cl, HCO3 Ringer's,J ms SO4 was 81.3±5.3 (1se) andJ ms SO4 was 2.5±0.2 nmol cm–2 hr–1 (n=20). Serosal addition of 4-acetamido-4-isothiocyanostilbene-22-disulfonate (SITS), 44-diisothiocyanostilbene-22-disulfonate (DIDS) or 1-anilino-8-naphthalene-sulfonate (ANS) inhibited SO4 transport, SITS being the most potent. Several other inhibitors of anion exchange in erythrocytes and other cells had no effect on ileal SO4 fluxes. In contrast to its effect on SO4 transport, SITS (500 m) did not detectably alter Cl transport.Replacement of all Cl, HCO3 and PO4 with gluconate reducedJ ms SO4 by 70% and increasedJ ms SO4 by 400%. A small but significantJ net SO4 remained.J ms SO4 could be increased by addition to the serosal side of Cl, Br, I, NO3 or SO4. The stimulatory effect of all these anions was saturable and SITS-inhibitable. The maximalJ ms SO4 in the presence of Cl was considerably higher than in the presence of SO4 (73.1 and 42.2 nmol. cm–2 hr–1, respectively;p<0.001). TheK 1/2 value for Cl was 7.4mm, 10-fold higher than that for SO4 (0.7mm). Omitting HCO3 and PO4 had no measurable effects on SO4 fluxes.This study shows that (i) SO4 crosses the serosal border of rabbit ileal mucosa by anion exchange; (ii) the exchange process is inhibited by SITS, DIDS and ANS, but not by several other inhibitors of anion exchange in other systems; (iii) SO4 may exchange for Cl, Br, I, NO3 and SO4 itself, but probably not for HCO3 or PO4; (iv) kinetics of the exchange system suggest there is a greater affinity for SO4 than for Cl, although the maximal rate of exchange is higher in the presence of Cl; and, finally (v) SITS has little or no effect on net Cl transport.  相似文献   

17.
We have previously reported that the isolated frog corneal epithelium (a Cl-secreting epithelium) has a large diffusional water permeability (Pdw 1.8×10–4 cm/s). We now report that the presence of Cl in the apical-side bathing solution increases the diffusional water flux, Jdw (in both directions) by 63% from 11.3 to 18.4 l min–1 · cm–2 with 60 mm [Cl] exerting the maximum effect. The presence of Cl in the basolateral-side bathing solution had no effect on the water flux. In Cl-free solutions amphotericin B increased Jdw by 29% but only by 3% in Cl-rich apical-side bathing solution, suggesting that in Cl-rich apical side bathing solution, the apical barrier is no longer rate limiting. Apical Br (75 mm) also increased Jdw by 68%. The effect of Cl on Jdw was observed within 1 min after its addition to the apicalside bathing solution. HgCl2 (0.5 mm) reduced the Cl-increased Pdw by 31%. The osmotic permeability (Pf) was also measured under an osmotic gradient yielding values of 0.34 and 2.88 (x 10–3 cm/s) in Cl-free and Cl-rich apical-side bathing solutions respectively. It seems that apical Cl, or Cl secretion into the apical bath could activate normally present but inactive water channels. In the absence of Cl, water permeability of the apical membrane seems to be limited to the permeability of the lipid bilayer.This work was supported by National Eye Institute grants EY-00160 and EY-01867.  相似文献   

18.
Summary Experiments were carried out in the isolated short-circuited skin of the toadBufo marinus ictericus.42K influx and efflux experiments were carried out with skins bathed on both sides by NaCl-Ringer's solution. Those fluxes showed very similar kinetics of equilibration with time and the results could be fitted by equations of a model of two intraepithelial compartments and the bathing solutions. In the steady state K influx is 3.99 ±0.36 nmol cm–2 hr–1 (n=7) and efflux 3.62±0.38 nmol cm hr–1 (n=7) and are not statistically different, indicating that no net K flux is present across the epithelium. Different kinds of perturbations affecting the rates of42K discharge into the bathing solutions were studied. Immediately after addition of amiloride (10–4 m) to the outer solution, a sharp decline is observed in the rate of42K discharge into the bathing solution,J 21 K , which falls from 3.62±0.38 nmol cm–2 hr–1 to 2.02±0.04 nmol cm–2 hr–1 (n=7) 2 min after addition of the drug, followed by a partial recuperation with time. A complete Na by K substitution in the outer bathing solution induces a prompt and marked decline inJ 21 K which is similar to that induced by amiloride. Increase in the outer bathing solution Na concentration from zero Na concentration induces a nonlinear increase inJ 21 K and a linear relationship was observed betweenJ 21 K and short-circuit current in the range of 0 to 115mm external Na concentration. The decline inJ 21 K induced by amiloride or by lowering external Na concentration was interpreted as being caused by electrical hyperpolarization of the external barrier of the epithelium induced by these procedures. Depolarization of the epithelial barriers by inner Na by K substitution in the short-circuited state (when the potential barriers are equal) drastically interfere with the rate of42K discharge from the epithelium into the bathing solutions. Thus, transient increases are observed both in the rate of42K discharge to the outer and to the inner bathing solutions upon depolarization of the barriers. These results indicate that at least the most important component of transepithelial K unidirectional fluxes goes through a transcellular route with a negligible paracellular component. Addition of ouabain (10–3 m) to the inner bathing solution induces a transient rise in the rate of42K discharge to the outer bathing solution with a peak on the order of 200% of the stationary value previous to the action of the inhibitor, followed by a return to new stationary values not statistically different from those observed previously to the effect of ouabain. The behavior ofJ 21 K upon the effect of ouabain, as suggested by comparison with predictions from computer simulation, strongly supports the notion of a rheogenic Na pump in the inner barrier of the epithelium against the notion of a nonrheogenic 11 Na–K pump.  相似文献   

19.
Summary The potential dependence of unidirectional36Cl fluxes through toad skin revealed activation of a conductive pathway in the physiological region of transepithelial potentials. Activation of the conductance was dependent on the presence of Cl or Br in the external bathing solution, but was independent of whether the external bath was NaCl-Ringer's, NaCl-Ringer's with amiloride, KCl-Ringer's or choline Cl-Ringer's To partition the routes of the conductive Cl ion flow, we measured in the isolated epithelium with double-barrelled microelectrodes apical membrane potentialV a , and intracellular Cl activity,a Cl c , of the principal cells indentified by differential interference contrast microscopy. Under short-circuit conditionsI sc=27.0±2.0 A/cm2, with NaCl-Ringer's bathing both surfaces,V a was –67.9±3.8mV (mean ±se,n=24, six preparations) anda Cl c was 18.0±0.9mM in skins from animals adapted to distilled water. BothV a anda Cl a were found to be positively correlated withI sc (r=0.66 andr=0.70, respectively). In eight epithelia from animals adapted to dry milieu/tap waterV a anda Cl c were measured with KCl Ringer's on the outside during activation and deactivation of the transepithelial Cl conductance (G Cl) by voltage clamping the transepithelial potential (V) at 40 mV (mucosa positive) and –100 mV. AtV=40 mV; i.e. whenG Cl was deactivated,V a was –70.1±5.0 mV (n=15, eight preparations) anda Cl c was 40.0±3.8mm. The fractional apical membrane resistance (fR a) was 0.69±0.03. Clamping toV=–100 mV led to an instantaneous change ofV a to 31.3±5.6 mV (cell interior positive with respect to the mucosal bath), whereas neithera Cl c norfR a changed significantly within a 2 to 5-min period during whichG Cl increased by 1.19±0.10 mS/cm2. WhenV was stepped back to 40 mV,V a instantaneously shifted to –67.8±3.9 mV whilea Cl c andfR a remained constant during deactivation ofG Cl. Similar results were obtained in epithelia impaled from the serosal side. In 12 skins from animals adapted to either tap water or distilled water the density of mitochondria-rich (D MRC) cells was estimated and correlated with the Cl current (I Cl though the fully activated (V=–100mV) Cl conductance). A highly significant correlation was revealed (r=–0.96) with a slope of –2.6 nA/m.r. (mitochondria-rich cell and an I-axis intercept not significantly different from zero. In summary, the voltage-dependent Cl currents were not reflected infR a anda Cl a of the principal cells but showed a correlation with the m.r. cell density. We conclude that the pricipal cells do not contribute significantly to the voltage-dependent Cl conductance.  相似文献   

20.
Summary The outflux of chloride through the isolated skin (J 31 Cl ) of the South American frogLeptodactylus ocellatus (L.) is carried by a mechanism that saturates at high concentration of chloride on the inside, and is stimulated by the presence of Cl in the outer solution (trans side). The presence of Na+ on the outside, by itself, does not increaseJ 31 Cl . However, whenJ 31 Cl is already increased by chloride on thetrans side, the addition of Na+ produces a significant further increase. At low concentration of Cl on the outsideJ 31 Cl proceeds through a route which involves changes in electrical parameters. The results suggest that both mechanisms are located on the cell membranes and, therefore, that the fluxes would cross through the cytoplasm of the cells. Na+ stimulates the second mechanism only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号