首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mitochondrial F1 from the yeast Schizosaccharomyces pombe, in contrast to the mammalian enzyme, exhibits a characteristic intrinsic tryptophan fluorescence with a maximal excitation at 291 nm and a maximal emission at 332 nm. Low values of Stern-Volmer quenching constants, 4.0 M-1 or 1.8 M-1, respectively, in the presence of either acrylamide or iodide, indicate that tryptophans are mainly buried inside the native enzyme. Upon subunit dissociation and unfolding by 6 M guanidine hydrochloride (Gdn.HCl), the maximal emission is shifted to 354 nm, a value very similar to that obtained with N-acetyltryptophanamide, a solute-tryptophan model compound. The tryptophan content of each isolated subunit has been estimated by fluorescence titration in the presence of Gdn.HCl with free tryptophan as a standard. Two tryptophans and one tryptophan are found respectively in the alpha and epsilon subunits, whereas none is detected in the beta, gamma, and delta subunits. These subunit contents are consistent with the total of seven tryptophans estimated for native F1 with alpha 3 beta 3 gamma 1 delta 1 epsilon 1 stoichiometry. The maximal emission of the isolated epsilon subunit is markedly blue-shifted to 310-312 nm by interaction with the isolated delta subunit, which suggests that the epsilon subunit tryptophan might be a very minor contributor to the native F1 fluorescence measured at 332 nm. This fluorescence is very sensitive to phosphate, which produces a marked blue shift indicative of tryptophans in a more hydrophobic environment. On the other hand, ADP and ATP quench the maximal emission at 332 nm, lower tryptophan accessibility to acrylamide, and reveal tryptophan heterogeneity.  相似文献   

2.
Human recombinant glycine N-methyltransferase (GNMT) unfolding by urea was studied by enzyme activity, size-exclusion chromatography, fluorescence spectroscopy, and circular dichroism. Urea unfolding of GNMT is a two-step process. The first transition is a reversible dissociation of the GNMT tetramer to compact monomers in 1.0-3.5M urea with enzyme inactivation. The compact monomers were characterized by Stokes radius (R(s)) of 40.7A equal to that of globular proteins with the same molecular mass as GNMT monomers, absence of exposure of tryptophan residues into solvent, and presence of about 50% of secondary structure of native protein. The second step of GNMT unfolding is a reversible transition of monomers from compact to a fully unfolded state with R(s) of 50A, exposed tryptophan residues, and disrupted secondary structure in 8M urea.  相似文献   

3.
J W Berger  J M Vanderkooi 《Biochemistry》1989,28(13):5501-5508
Room temperature phosphorescence techniques were used to study the structural and dynamic features of the tryptophan residues in bovine alpha-crystallin. Upon excitation at 290 nm, the characteristic signature of tryptophan phosphorescence was observed with an emission maximum at 442 +/- 2 nm. The phosphorescence intensity decay was biphasic with lifetimes of 5.4 ms (71%) and 42 ms (29%). Phosphorescence quenching measurements strongly suggest that each component corresponds to one class of tryptophans with the more buried residues having the longer emission lifetime. Three small-molecule quenchers were surveyed, and in order of increasing quenching efficiency: iodide less than nitrite less than acrylamide. A heavy-atom effect was observed in iodide solutions, and an upper limit of 5% was placed on the quantum yield of triplet formation in iodide-free solutions, while the phosphorescence quantum yield was estimated to be approximately 3.2 x 10(-4). The temperature dependence of the phosphorescence lifetime was measured between 5 and 40 degrees C. Arrhenius plots exhibited discontinuities at 26 and 29 degrees C for the short- and long-lived components, respectively, corresponding to abrupt transitions in segmental flexibility. Denaturation studies revealed conformational transitions between 1 and 2 M guanidine hydrochloride, and 4 and 6 M urea. Long-lived phosphorescence lifetimes of 3 and 7 ms were measured in 6 M guanidine hydrochloride and 8 M urea, respectively, suggesting that some structural features are preserved even at very high concentrations of denaturant. Our studies demonstrate the sensitivity of room temperature phosphorescence spectroscopy to the structure of alpha-crystallin, and the applicability of this technique for monitoring conformational changes in lens crystallin proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A number of molecular agents that can efficiently quench the room temperature phosphorescence of tryptophan were identified, and their ability to quench the phosphorescence lifetime of tryptophan in nine proteins was examined. For all quenchers, the quenching efficiency generally follows the same sequence, namely, N-acetyltryptophanamide (NATA) greater than parvalbumin approximately lactoglobulin approximately ribonuclease T1 greater than liver alcohol dehydrogenase greater than aldolase greater than Pronase approximately edestin greater than azurin greater than alkaline phosphatase. Quenching rate constants for O2 and CO are relatively insensitive to protein differences, while H2S and CS2 are somewhat more sensitive. These small molecule agents appear to act by penetrating into the proteins. However, penetration to truly buried tryptophans is less favorable than previously suggested; in five proteins studied, quenching efficiency by O2 is 20-1000 times lower than for NATA, and up to 10(5) lower for H2S and CS2. Larger and more polar quenchers--including organic thiols, conjugated ketones and amides, and anionic species--were also studied. The efficiency of these quenchers does not correlate with quencher size or polarity, the quenching reaction has low energy of activation, and quenching rates are insensitive to solvent viscosity. These results indicate that the larger quenchers do not approach the buried tryptophans by penetrating into the proteins, even on the long phosphorescence time scale, and are also inconsistent with a mechanism in which quencher encounter with the tryptophan occurs in free solution, as in a protein-opening reaction. The results obtained suggest that the quenching process involves a long-range radiationless transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady‐state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high‐throughput drug screening campaigns.  相似文献   

6.
The relevance of partially ordered states of proteins (such as the molten globule state) in cellular processes is beginning to be understood. Bovine α-lactalbumin (BLA) assumes the molten globule state at acidic pH. We monitored the organization and dynamics of the functionally important tryptophan residues of BLA in native and molten globule states utilizing the wavelength-selective fluorescence approach and fluorescence quenching. Quenching of BLA tryptophan fluorescence using quenchers of varying polarity (acrylamide and trichloroethanol) reveals varying degrees of accessibility of tryptophan residues, characteristic of native and molten globule states. We observed red edge excitation shift (REES) of 6 nm for the tryptophans in native BLA. Interestingly, we show here that BLA tryptophans exhibit REES (3 nm) in the molten globule state. These results constitute one of the early reports of REES in the molten globule state of proteins. Taken together, our results indicate that tryptophan residues in BLA in native as well as molten globule states experience motionally restricted environment and that the regions surrounding at least some of the BLA tryptophans offer considerable restriction to the reorientational motion of the water dipoles around the excited-state tryptophans. These results are supported by wavelength-dependent changes in fluorescence anisotropy and lifetime for BLA tryptophans. These results could provide vital insight into the role of tryptophans in the function of BLA in its molten globule state in particular, and other partially ordered proteins in general.  相似文献   

7.
Several metmyoglobins (red kangaroo, horse and sperm whale), containing different numbers of tyrosines, but with invariant tryptophan residues (Trp-7, Trp-14), exhibit intrinsic fluorescence when studied by steady-state front-face fluorometry. The increasing tyrosine content of these myoglobins correlates with a shift in emission maximum to shorter wavelengths with excitation at 280 nm: red kangaroo (Tyr-146) emission maximum 335 nm; horse (Tyr-103, -146) emission maximum 333 nm; sperm whale (Tyr-103, -146, -151) emission maximum 331 nm. Since 280 nm excites both tyrosine and tryptophan, this strongly suggests that tyrosine emission is not completely quenched but also contributes to this fluorescence emission. Upon titration to pH 12.5, there is a reversible shift of the emission maximum to longer wavelengths with an increase greater than 2-fold in fluorescence intensity. With excitation at 305 nm, a tyrosinate-like emission is detected at a pH greater than 12. These studies show that: (1) metmyoglobins, Class B proteins containing both tyrosine and tryptophan residues, exhibit intrinsic fluorescence; (2) tyrosine residues also contribute to the observed steady-state fluorescence emission when excited by light at 280 nm; (3) the ionization of Tyr-146 is likely coupled to protein unfolding.  相似文献   

8.
EcoRI DNA methyltransferase contains tryptophans at positions 183 and 225. Tryptophan 225 is adjacent to residues previously implicated in S-adenosylmethionine (AdoMet) binding and to cysteine 223, previously shown to be the site of N-ethyl maleimide-mediated inactivation of the enzyme (Reich, N. O., and Everett, E. (1990) J. Biol. Chem. 265, 8929-8934; Everett, E. A., Falick, A. M., and Reich, N. O. (1990) J. Biol. Chem. 265, 17713-17719). The fluorescence spectra of the wild-type enzyme is centered at 338 nm indicating partial tryptophan solvent accessibility. Substitution of tryptophan 183 with phenylalanine results in a 45% drop in fluorescence intensity, but no shift in lambda max. DNA binding to the wild-type methyltransferase caused an increase in the fluorescence intensity, while binding to the tryptophan 183 mutant had a quenching effect, suggesting that DNA binding induces a conformational change near both tryptophans. Binding of AdoMet and various AdoMet analogs to the wild-type methyltransferase results in no change in the fluorescence spectrum when excitation occurs at 295 nm, suggesting that no conformational change occurs, and AdoMet does not interact with either tryptophan. In contrast, quenching was observed when excitation occurred at 280 nm, suggesting that AdoMet and its analogs may be quenching tyrosine to tryptophan energy transfer. Protein-ligand complexes were titrated with acrylamide, and the data also implicate conformational changes upon DNA binding but not upon AdoMet binding, consistent with previous limited proteolysis results (Reich, N. O., Maegley, K. A., Shoemaker, D.D., and Everett, E. (1991) Biochemistry 30, 2940-2946).  相似文献   

9.
The conformational stabilities of full-length colicin B and its isolated C-terminal domain were studied by guanidine hydrochloride induced unfolding. The unfolding/refolding was monitored by far-UV CD and intrinsic tryptophan fluorescence spectroscopies. At pH 7.4, the disruption of the secondary structure of full-length colicin B is monophasic, while changes in tertiary structure occur in two separate transitions. The intermediate species, which is well-populated around 2.2 M guanidine hydrochloride, exhibits secondary and tertiary structures distinct from both native and unfolded states. Whereas the domain structure of native full-length colicin B is reflected in its DSC profile, the folding intermediate of the same protein exhibits a single unresolved peak. These observations have led us to propose an unfolding model for full-length colicin B where the first transition between 0 and 2.5 M GuHCl with an associated free energy of 3 kcal/mol correlates with the partial unfolding of the R/T domain. The stability of full-length colicin B is weakened due to the presence of the R/T domain in both the native [Ortega, A., Lambotte, S., and Bechinger, B. (2001) J. Biol. Chem. 276 (17), 13563-13572] and the intermediate states. The second transition between 2.5 and 5 M GuHCl involves unfolding of the C-terminal domain (Delta = 7 kcal/mol). The isolated colicin B C-terminal domain consists of two subdomains, and the two parts of this protein fragment unfold sequentially through the formation of at least one intermediate. The significance of these results for membrane insertion of colicin B is discussed.  相似文献   

10.
The unfolding of the recombinant regulatory subunit of cAMP-dependent protein kinase I was followed by monitoring the intrinsic protein fluorescence. Unfolding proceeds in at least two stages. First, the quenching of fluorescence due to cAMP binding is abolished at relatively low levels of urea (less than 2 M) and is observed as an increase in intensity at 340 nm. The high-affinity binding of cAMP is retained in 3 M urea even though the quenching is lost. The second stage of unfolding, presumably representing unfolding of the polypeptide chain, is seen as a shift in lambda max from 340 to 353 nm. The midpoint concentration, Cm, for this process is 5.0 M. Cyclic AMP binding activity is lost at a half-maximal urea concentration of 3.5 M and precedes the shift in lambda max. Unfolding of the protein in the presence of urea was fully reversible; furthermore, the presence of excess levels of cAMP stabilized the regulatory subunit. A free energy value (delta GDH2O) of 7.1 +/- 0.2 kcal/mol was calculated for the native form of the protein when denaturation was induced with either urea or guanidine hydrochloride. Iodide quenching of tryptophan fluorescence was used to elucidate the number of tryptophan residues accessible during various stages of the unfolding process. In the native cAMP-bound form of the regulatory subunit, only one of the three tryptophans in the regulatory subunit is quenched by iodide while more than two tryptophans can be quenched with iodide in the presence of 3 M urea.  相似文献   

11.
1. Human lactoferrin and transferrin are capable of binding several transition metal ions [Fe(III), Cu(II), Mn(III), Co(III)] into specific binding sites in the presence of bicarbonate. 2. Increased conformational stability and increased resistance to protein unfolding is observed for these metal-ion complexes compared to the apoprotein form of these proteins. 3. Mn(III)-lactoferrin and transferrin complexes exhibit steeper denaturation transitions than the Co(III) complexes of these proteins suggesting greater cooperativity in the unfolding process. 4. The incorporation of Fe(III) into the specific metal binding sites offers the greatest resistance to thermal unfolding when compared to the other transition metal ions studied. 5. Non-coincidence of unfolding transitions is observed, with fluorescence transition midpoints being lower than those determined by absorbance measurements. 6. Fully denatured proteins in the presence of urea and alkyl ureas exhibit fluorescence wavelength maxima at 355-356 nm indicative of tryptophan exposure upon protein unfolding.  相似文献   

12.
Bovine α-lactalbumin (BLA) is known to be present in molten globule form in its apo-state (i.e., Ca2+ depleted state). We explored the organization and dynamics of the functionally important tryptophan residues of BLA in native, molten globule and denatured states utilizing the wavelength-selective fluorescence approach. We observed red edge excitation shift (REES) of 7 nm for the tryptophans in native BLA. Interestingly, we show here that BLA tryptophans exhibit considerable REES (8 nm) in its molten globule state. Taken together, these results indicate that tryptophan residues in BLA in native as well as molten globule states experience motionally restricted environment. We further show that even the denatured form of BLA exhibits a modest REES of 3 nm, indicating that the tryptophans are shielded from bulk solvent, even when denatured, due to the presence of residual structure around tryptophan(s). This is further supported by wavelength-dependent changes in fluorescence anisotropy and lifetime for BLA tryptophans. These novel results constitute one of the first reports of REES in the molten globule state of proteins, and could provide vital insight into the role of tryptophans in the function of BLA in its molten globule state in particular, and other partially ordered proteins in general.  相似文献   

13.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Bacteriorhodopsin contains 8 tryptophan residues distributed across the membrane-embedded helices. To study their possible functions, we have replaced them one at a time by phenylalanine; in addition, Trp-137 and -138 have been replaced by cysteine. The mutants were prepared by cassette mutagenesis of the synthetic bacterio-opsin gene, expression and purification of the mutant apoproteins, renaturation, and chromophore regeneration. The replacement of Trp-10, Trp-12 (helix A), Trp-80 (helix C), and Trp-138 (helix E) by phenylalanine and of Trp-137 and Trp-138 by cysteine did not significantly alter the absorption spectra or affect their proton pumping. However, substitution of the remaining tryptophans by phenylalanine had the following effects. 1) Substitution of Trp-86 (helix C) and Trp-137 gave chromophores blue-shifted by 20 nm and resulted in reduced proton pumping to about 30%. 2) As also reported previously (Hackett, N. R., Stern, L. J., Chao, B. H., Kronis, K. A., and Khorana, H. G. (1987) J. Biol. Chem. 262, 9277-9284), substitution of Trp-182 and Trp-189 (helix F) caused large blue shifts (70 and 40 nm, respectively) in the chromophore and affected proton pumping. 3) The substitution of Trp-86 and Trp-182 by phenylalanine conferred acid instability on these mutants. The spectral shifts indicate that Trp-86, Trp-182, Trp-189, and possibly Trp-137 interact with retinal. It is proposed that these tryptophans, probably along with Tyr-57 (helix B) and Tyr-185 (helix F), form a retinal binding pocket. We discuss the role of tryptophan residues that are conserved in bacteriorhodopsin, halorhodopsin, and the related family of opsin proteins.  相似文献   

15.
The kinetics of actin unfolding induced by guanidine hydrochloride has been studied. On the basis of obtained experimental data a new kinetic pathway of actin unfolding was proposed. We have shown that the transition from native to inactivated actin induced by guanidine hydrochloride (GdnHCl) passes through essential unfolding of the protein. This means that inactivated actin should be considered as the off-pathway species rather than an intermediate conformation between native and completely unfolded states of actin, as has been assumed earlier. The rate constants of the transitions that give rise to the inactivated actin were determined. At 1.0-2.0 M GdnHCl the value of the rate constant of the transition from native to essentially unfolded actin exceeds that of the following step of inactivated actin formation. It leads to the accumulation of essentially unfolded macromolecules early in the unfolding process, which in turn causes the minimum in the time dependencies of tryptophan fluorescence intensity, parameter A, characterizing the intrinsic fluorescence spectrum position, and tryptophan fluorescence anisotropy.  相似文献   

16.
We have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membrane-bound gramicidin. The interfacially localized tryptophans in the channel conformation display REES of 7 nm whereas the tryptophans in the nonchannel conformation exhibit REES of 2 nm which highlights the difference in their average environments in terms of localization in the membrane. This is supported by tryptophan penetration depth measurements using the parallax method and fluorescence lifetime and polarization measurements. Further differences in the average tryptophan microenvironments in the two conformations are brought out by fluorescence quenching experiments using acrylamide and chemical modification of the tryptophans by N-bromosuccinimide. In summary, we report novel fluorescence-based approaches to monitor conformations of this important ion channel peptide. Our results offer vital information on the organization and dynamics of the functionally important tryptophan residues in gramicidin.  相似文献   

17.
L-Lactate dehydrogenase from Bacillus stearothermophilus was rebuilt by using site-directed mutagenesis to produce an enzymically active, tryptophan-less enzyme by replacing all the wild-type tryptophans (80, 150, and 203) by tyrosines. Nine single tryptophan-containing active enzymes were constructed from this enzyme by genetically replacing one of the tyrosines 36, 85, 147, 190, 203, 237, 248, 279, or 285 by tryptophan. The equilibrium and the time-resolved tryptophan fluorescence intensity and anisotropy were used to report unfolding events in guanidine hydrochloride (GHCl) monitored from these nine defined positions. Three structural transitions, half complete at 0.55, 1.7, and 2.8 M GHCl, were identified and defined four folding intermediates, I (native), II (expanded monomer 1), III (expanded monomer 2), and IV (random coil), stable at 0, 1, 2.2, and 4 M GHCl, respectively. Intermediate II is a globular monomer. All the probed alpha-helices and most of the beta-structure was intact. There was an increase in the rate but not the extent of the mobilities of six of the probed tryptophan side chains, indicating loss of tertiary structure. Circular dichroism (CD) showed all the secondary structure to be intact. Intermediate III is monomeric and still globular, but the tryptophan anisotropy indicated an increase mobility at positions 36, 85, 190, 203, 279, and 285. Helix alpha-B is further disrupted but helices alpha-1F, alpha-2G, and alpha 3G were still rigid. CD showed half the secondary structure to be still intact. Intermediate IV is a random coil in which all tryptophans have complete rotational freedom and the helix CD signal is lost.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A protocol for dry weight determination of the concentration of protein, using 0.2-1.0 mg of protein per sample, has been presented and applied to nine proteins: bovine serum albumin, ovalbumin, bovine carbonic anhydrase B, galactoside binding protein (rabbit), lens calinaris lectin B, green pea lectin, soy bean agglutinin-m, wheat germ agglutinin, and antithrombin III. Dry weights, combined with spectrophotometry, have been used to calculate A1% 1 cm values at 280 nm for these proteins in dilute salt solutions and are compared with published values. From absorptivities at 288 and 280 nm in 6 M guanidine hydrochloride, the number of tryptophan residues per molecule has also been calculated and compared with literature values. These results demonstrate the utility of the present method of dry weight determination.  相似文献   

19.
The tryptophan fluorescence of two membrane proteins (outer membrane protein A and lactose permease), a 21-residue hydrophobic peptide, three soluble proteins (rat serum albumin, ribonuclease TI, and azurin), and N-acetyltryptophanamide (NATA) was investigated by time-resolved measurements extended over 65 ns. A long lifetime component with a characteristic time of 25 ns and an amplitude below 1% was found for outer membrane protein A, lactose permease, the peptide in lipid membranes, and azurin in water, but not for rat serum albumin, ribonuclease TI, and NATA in water. When outer membrane protein A was dissolved and unfolded in guanidinum hydrochloride, the long lifetime component disappeared. Hence, a hydrophobic environment seems to be a necessary requirement for the long lifetime component to be present. However, NATA dissolved in butanol does not exhibit the long lifetime component, while the peptide dissolved in the same solvent under conditions which preserve its helical structure does show the long lifetime. Thus, a regular secondary structure for the polypetide chain to which the tryptophan residue belongs seems to be a second necessary requirement for the long lifetime component to be present. The long lifetime component may therefore be seen in the context of protein substates.Abbreviations OmpA outer membrane protein A - LP lactose permease - RSA rat serum albumin - RNAse TI ribonuclease TI - P21 21-residue peptide - NATA N-acetyltryptophanamide - PTP paraterphenyl - POPE palmitoyloleoylphosphatidylethanolamine - POPC palmitoyloleoylphosphatidylcholine - POPG palmitoyloleoylphosphatidylglycerol - GdHCI guanidinium hydrochloride Correspondence to: F. Jähnig  相似文献   

20.
Serum retinol binding protein (RBP) is a member of the lipocalin family, proteins with up-and-down beta-barrel folds, low levels of sequence identity, and diverse functions. Although tryptophan 24 of RBP is highly conserved among lipocalins, it does not play a direct role in activity. To determine if Trp24 and other conserved residues have roles in stability and/or folding, we investigated the effects of conservative substitutions for the four tryptophans and some adjacent residues on the structure, stability, and spectroscopic properties of apo-RBP. Crystal structures of recombinant human apo-RBP and of a mutant with substitutions for tryptophans 67 and 91 at 1.7 A and 2.0 A resolution, respectively, as well as stability measurements, indicate that these relatively exposed tryptophans have little influence on structure or stability. Although Trp105 is largely buried in the wall of the beta-barrel, it can be replaced with minor effects on stability to thermal and chemical unfolding. In contrast, substitutions of three different amino acids for Trp24 or replacement of Arg139, a conserved residue that interacts with Trp24, lead to similar large losses in stability and lower yields of native protein generated by in vitro folding. The results and the coordinated nature of natural substitutions at these sites support the idea that conserved residues in functionally divergent homologs have roles in stabilizing the native relative to misfolded structures. They also establish conditions for studies of the kinetics of folding and unfolding by identifying spectroscopic signals for monitoring the formation of different substructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号