首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A binding assay has been developed to characterize beta-adrenergic receptors on intact L6 muscle cells. The affinity of beta-adrenergic receptors for the radioligand iodohydroxybenzylpindolol (IHYP) was the same in membrane preparations and in intact cells when determined by either equilibrium binding or kinetic analysis. The number of specific IHYP binding sites per cell was approximately the same on intact cells as on membranes. The pharmacological properties of antagonists indicated that the receptors on intact cells were identical to those on membranes. However, the beta-adrenergic receptors on intact cells had a 100-400 fold lower affinity at equilibrium for the agonist isoproterenol than did beta-adrenergic receptors on membranes. This low affinity of the receptor for agonists as measured by inhibition of radioligand binding in intact cells has also been observed in C6 (2) and S49 (3) cells. Our results suggest that beta receptors on intact cells after a 1 minute incubation was similar to the KD value for isoproterenol measured in membranes at equilibrium in the presence of GTP. After 1-2 minutes of exposure to a low concentration of agonist, binding of IHYP was no longer inhibited. These results suggest that agonists rapidly convert the beta receptors on intact cells to a state which has a low affinity for agonists. The affinity of the receptor for antagonists did not change during the incubation.  相似文献   

2.
Beta-adrenergic receptor number and receptor affinity for isoproterenol were assessed at various in vitro ages of the human diploid fibroblast cell line IMR-90. From population doubling level (PDL) 33 to 44, there was a positive correlation between beta-adrenergic receptor density and PDL (r = 0.709). Beta-adrenergic receptors, assessed by Scatchard analysis of [125I]-iodocyanopindolol (ICYP) binding, increased from 15 fmol/mg protein at PDL 33 to 36 fmol/mg protein at PDL 44. In contrast, from PDL 44 to 59, there was a negative correlation between beta-adrenergic receptor density and PDL (r = 0.768). Receptor density declined to 12 fmol/mg protein at PDL 59. When the density of beta-adrenergic receptors was expressed as receptor per cell, the findings were similar. Receptor agonist affinity for isoproterenol was determined from Hill plots of [125I]-ICYP competition with isoproterenol. There was no change in the dissociation constant for isoproterenol with in vitro age. In humans, serum norepinephrine concentrations increase with age. This increase in serum norepinephrine may be partially responsible for the decreased beta-adrenergic receptor-agonist affinity observed with age in human lymphocytes and rat heart and lung. Similar changes in receptor-agonist affinity are observed in rat heart and human lymphocytes following exposure to beta-agonists and are part of the desensitization process. The present findings are consistent with the hypothesis that the decreases in receptor agonist affinity in rat and man with age are secondary to increases in catecholamine concentrations.  相似文献   

3.
Desensitization of turkey erythrocyte adenylate cyclase by exposure of these cells to the beta-adrenergic agonist isoproterenol leads to a decrease in subsequent adenylate cyclase stimulation by isoproterenol, F-, or Gpp(NH)p without any apparent loss or down regulation of receptors (B.B. Hoffman et al. J. Cyclic Nucl. Res. 5: 363-366, 1979). We now report that the desensitization is associated with a functional "uncoupling" of the beta-adrenergic receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide sensitive complex with agonist as assessed by computer analysis of radioligand binding data. The changes in adenylate cyclase responsiveness as well as the alterations in receptor affinity for agonists are reproduced by incubation of turkey erythrocytes with the cAMP analog 8-Bromo-adenosine 3':5'- cyclic monophosphate. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be a cAMP mediated alteration of a component(s) of the beta-adrenergic receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

4.
Adrenergic receptor agonists are known to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of beta-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the beta-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of beta-adrenergic agonists on expression of the high affinity IL-2 receptors, [125I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of beta-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that beta-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites.  相似文献   

5.
Agonist treatment of C6-glioma cells induces two altered states in beta-adrenergic receptors, a low affinity for the hydrophilic antagonist CGP-12177 and a low affinity for agonists like isoproterenol. We present evidence that, in cells not treated to inhibit receptor internalization, the two properties occur with a different time course, the low affinity for isoproterenol preceding that for CGP-12177. In that the low affinity for CGP-12177 is due to the internalization of the receptor, the results indicate that uncoupling of the receptor, indicated by the low affinity for isoproterenol, occurs while the receptor is still located on the cell surface. Removal of the agonist leads to reappearance of the receptor to the plasma membrane followed by loss of the uncoupled state.  相似文献   

6.
The phosphorylation of cardiac membrane proteins has been studied in preparations of newborn chick hearts. Membranes were isolated from 32P-loaded tissue after treatment with or without the beta-adrenergic receptor agonist isoproterenol and/or the muscarinic cholinergic receptor agonist oxotremorine. The phosphorylation of a low molecular weight membrane protein was enhanced by isoproterenol as early as 10 s after adding the drug. This phosphoprotein had a molecular weight of approximately 26,000 or 14,000 depending on the conditions used to solubilize the membranes prior to electrophoresis. It is most probably phospholamban/calciductin. The apparent molecular weight of the protein observed at 26,000 increased by approximately 1,000 as phosphorylation increased. The phosphorylation of this protein was abolished by short term treatment of the isoproterenol-treated tissue with the muscarinic receptor agonist oxotremorine. Effects of oxotremorine were observed within 30 s and were maximal between 2-5 min. The oxotremorine-induced decrease in phosphorylation was accompanied by a decrease in molecular weight. This phosphoprotein was found in a membrane fraction enriched in cardiac sarcolemma as well as in another containing sarcolemma and sarcoplasmic reticulum. The phosphorylation of this membrane component may play a role in the effects of beta-adrenergic and muscarinic cholinergic agonists on cardiac contractile force.  相似文献   

7.
Treatment of embryonic chick muscle myotubes with the beta-adrenergic agonist isoproterenol increased the number of surface membrane nicotinic cholinergic receptors. Receptor degradation was unaffected by isoproterenol, suggesting that receptor synthesis was increased. The effect of isoproterenol appears to be mediated by the beta-adrenergic receptor adenylate cyclase system for the following reasons: (a) The response to isoproterenol was dose-dependent and stereospecific. (b) The response to catecholamines followed the order isoproterenol greater than epinephrine greater than norepinephrine. (c) Alprenolol, a beta-adrenergic antagonist, but not phentolamine, an alpha-antagonist, abolished the effect. (d) The maximal effects of isoproterenol and cholera toxin, an activator of adenylate cyclase, were not additive. These results suggest that under certain physiological states catecholamines may play an important role in the regulation of cholinergic receptors.  相似文献   

8.
Summary The beta-adrenergic receptor which is coupled to adenylate cyclase in the frog erythrocycte plasma membrane provides a convenient model system for probing the molecular characteristics of an adenylate cyclase coupled hormone receptor. Direct radioligand binding studies with beta-adrenergic agonists and antagonists such as [3H]hydroxybenzylisoproterenol and [3H]dihydroalprenolol have shed new light on the biochemical properties of the receptor as well as on its mode of interaction with other components of the adenylate cyclase system. Agonist binding to the receptor induces a high affinity state of the receptor which can be selectively reverted to a low agonist affinity state by guanyl nucleotides. This agonist-induced high affinity state of the receptor appears to correspond to a receptor moiety which has larger apparent molecular weight and which is probably a complex of the beta-adrenergic receptor and nucleotide regulatory binding protein. Antagonists do not appear capable of inducing or stabilizing the formation of this high affinity receptor-nucleotide site complex.The beta-adrenergic receptors have been solubilized using the plant glycoside digitonin as the detergent and have been highly purified by biospecific affinity chromatography on an alprenolol-agarose affinity support. These highly purified receptor preparations retain all of the binding characteristics observed in the unpurified soluble receptor preparations.Remarkably, antibodies raised in rabbits against affinity chromatography purified preparations of the receptor, themselves bind beta-adrenergic ligands with typical beta-adrenergic specificity. Such antibodies which possess binding sites similar to those of physiological receptors provide useful model systems for further probing the molecular characteristics of beta-adrenergic binding sites.  相似文献   

9.
Recent electrophysiological studies with cell membrane patches of cardiac myocytes and an electrically excitable cell line derived from rat pituitary tumor suggested that voltage activated calcium channels must be phosphorylated to respond to membrane depolarization (Armstrong and Eckert 1986; Trautwein and Kameyama 1986). In view of the "phosphorylation hypothesis" we investigated the adenylate-cyclase activity, the characteristics of beta-adrenergic and calcium channel agonist binding sites in control and desensitized (exposure to isoproterenol) human embryonal cells (HEC), and in fragmented membrane preparations of canine coronary smooth muscle. Our results suggest that down-regulation of the membrane-bound beta-adrenergic receptors, induced by isoproterenol in human embryonal cells and also in adult canine vascular tissue, results in physical translocation of beta-adrenergic binding sites into the light membrane fraction. This phenomenon is accompanied with an increased intracellular concentration of cAMP in and an increased binding of the calcium channel agonist (3H) BAYK 8644 to both HEC and canine smooth muscle membrane preparations. It could be concluded that phosphorylation of beta-adrenergic receptors regulates not only the beta subcellular distribution of the beta receptors but also the availability of calcium channel agonist binding sites in the cellular membrane.  相似文献   

10.
The effects of the muscarinic cholinergic agonist methacholine on affinity of beta-adrenergic receptors for isoproterenol and on isoproterenol-induced stimulation of adenylate cyclase activity were assessed in canine myocardium. GTP and guanyl-5'-yl imidoiphosphate both decreased the affinity of beta-adrenergic receptors for isoproterenol without altering the affinity of these receptors for propranolol. Methacholine (10 nM to 10 micronM) antagonized the guanine nucleotide-induced reduction in beta-adrenergic receptor affinity for isoproterenol. This effect of methacholine was reversed by atropine. The choline ester had no effect on the affinity of beta-adrenergic receptors for isoproterenol in the absence of guanine nucleotides. Likewise, methacholine had no effect on the affinity of beta-adrenergic receptors for propranolol, either in the presence or absence of guanine nucleotides. Methacholine also attenuated GTP-induced activation of adenylate cyclase or isoproterenol-induced activation of the enzyme in the presence of GTP. The effects of methacholine on myocardial adenylate cyclase activity were apparent only in the presence of GTP. These effects were also reversed by atropine. The choline ester had no effect on adenylate cyclase activity in the presence of guanyl-5'-yl imidodiphosphate or NaF. The results of the present study suggest that muscarinic cholinergic agonists can regulate both beta-adrenergic receptors and adenylate cyclase by modulating the effects of GTP.  相似文献   

11.
Agonist-induced changes in beta-adrenergic receptors on intact cells   总被引:3,自引:0,他引:3  
Competition by beta-adrenergic agonists and antagonists for 125I-pindolol binding sites on intact cells (1321N1 human astrocytoma and C62B rat glioma) was measured using short time binding assays as previously described (Toews, M. L., Harden, T. K., and Perkins, J. P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3553-3557). Preincubation of cells with agonists converted about half of the cellular beta-adrenergic receptors from a form exhibiting high affinity for the agonists isoproterenol and epinephrine and the antagonist sotalol to a form exhibiting much lower apparent affinity for these ligands in short time assays. Exposure to agonists did not alter the affinity of receptors for the antagonist metoprolol. This change in the ligand binding properties of the receptor was rapid (t1/2 = 1-2 min following a lag of about 0.5 min), reversible (t1/2 = 6-8 min), and dependent on the agonist concentration present during the preincubation (K0.5 = 15 nM for isoproterenol). Both isoproterenol and sotalol attained equilibrium with the high affinity receptors very rapidly but equilibrated only slowly with those receptors exhibiting low apparent affinity in short time assays. These results are interpreted in terms of a model which postulates that both the low apparent affinity in short time assays and the subsequent slow equilibration of hydrophilic ligands with these receptors result from agonist-induced internalization of a fraction of cell surface beta-adrenergic receptors. The relationship of this change in receptor binding properties to other aspects of agonist-induced desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system is discussed.  相似文献   

12.
We have utilized limited in situ trypsinization of the adenylate cyclase-coupled beta-adrenergic receptor of frog erythrocytes to probe the processes of receptor activation, desensitization, and recycling. Treatment of intact erythrocytes with trypsin (1 mg/ml) for 1 h at 20 degrees C converts all the receptor peptides (identified by photoaffinity labeling with p-azido-125I-benzylcarazolol) from a Mr approximately 58,000 to a Mr approximately 40,000 species. Nonetheless, the trypsinized beta-adrenergic receptors bind agonists and antagonists with unaltered affinity and with no change in the number of binding sites. Moreover, the ability of the proteolyzed receptors to interact with the nucleotide regulatory protein to form a high affinity guanine nucleotide-sensitive state and to activate adenylate cyclase were also unaltered. However, upon exposure of intact cells to the agonist isoproterenol, trypsinized beta-adrenergic receptors were more rapidly and more completely cleared from the plasma membranes ("down-regulated") than untrypsinized receptors. Whereas down-regulated receptors from nontrypsinized cells appear to recycle to the cell surface after removal of the agonist, internalized trypsinized beta-adrenergic receptors do not recycle to the plasma membrane and appear to be degraded within the cell. Moreover, when internalized receptors, recovered in a light vesicle fraction, were fused with a heterologous adenylate cyclase system, untreated but not trypsinized receptors reconstituted catecholamine stimulation of the enzyme. These data suggest that the beta-adrenergic receptor contains a trypsin-sensitive site which is exposed on the outer surface of the plasma membrane. Proteolysis at this site releases a fragment which though not critically involved in either ligand binding or "effector coupling" might be important for anchoring the receptors in the plasma membrane. These data also suggest that in situ proteolysis of the receptors might serve as a physiological trigger for their internalization and degradation.  相似文献   

13.
C Senault  V Le Comte  R Portet 《Biochimie》1984,66(7-8):573-578
In relation to decreased metabolic sensitivity to catecholamines observed, in vitro, in brown fat of cold-acclimated rats, beta-adrenergic receptors were studied in isolated cells and in a crude membrane preparation from rat interscapular brown adipose tissue. [3H] dihydroalprenolol binding had the same characteristics in both types of preparation; competition studies of [3H] dihydroalprenolol binding led to the characterization of beta 1 subtype adrenergic receptors with a lower affinity of beta-adrenergic agonists for [3H] dihydroalprenolol binding sites in membranes than that found in isolated cells. Cold acclimation produced, in isolated cells only, a decrease of 41% in the [3H] dihydroalprenolol binding sites and a beta-adrenergic agonist affinity increase. It is concluded that beta-adrenergic receptor decrease could be a factor, at the hormone receptor interaction level, in the regulation of the transmission of biological action responsible for the cold-induced decrease in catecholamine responsiveness in brown adipose tissue. For a study of the desensitization process in brown fat, isolated cells seem to offer certain advantages over a crude membrane preparation.  相似文献   

14.
Incubation of intact rat adipocytes with physiological concentrations of catecholamines inhibits the specific binding of 125I-insulin and 125I-epidermal growth factor (EGF) by 40 to 70%. Affinity labeling of the alpha subunit of the insulin receptor demonstrates that the inhibition of hormone binding is directly reflective of a specific decrease in the degree of receptor occupancy. The stereospecificity and dose dependency of the binding inhibitions are typical of a classic beta 1-adrenergic receptor response with half-maximal inhibition occurring at 10 nM R-(-)-isoproterenol. Specific alpha-adrenergic receptor agonists and beta-adrenergic receptor antagonists have no effect, while beta-adrenergic receptor antagonists block the inhibition of 125I-insulin and 125I-EGF binding to receptors induced by beta-adrenergic receptor agonists. Further, these effects are mimicked by incubation of adipocytes with dibutyryl cyclic AMP or with 3-isobutyl-1-methylxanthine. The beta-adrenergic inhibition of both 125I-insulin and 125I-EGF binding is very rapid, requiring only 10 min of isoproterenol pretreatment at 37 degrees C for a maximal effect. Removal of isoproterenol by washing the cells in the presence of alprenolol leads to complete reversal of these effects. The inhibition of 125I-EGF binding is temperature dependent whereas the inhibition of 125I-insulin binding is relatively insensitive to the temperature of isoproterenol pretreatment. Scatchard analysis of 125I-insulin and 125I-EGF binding demonstrated that the decrease of insulin receptor-binding activity may be due to a decrease in the apparent number of insulin receptors while the inhibition of EGF receptor binding can be accounted for by a decrease in apparent EGF receptor affinity. The decrease in the insulin receptor-binding activity is physiologically expressed as a dose-dependent decrease of insulin responsiveness in the adipocyte with respect to two known responses, stimulation of insulin-like growth factor II receptor binding and activation of the glucose-transport system. These results demonstrate a beta-adrenergic receptor-mediated cyclic AMP-dependent mechanism for the regulation of insulin and EGF receptors in the rat adipocyte.  相似文献   

15.
The affinity of agonists but not antagonists at hepatic membrane alpha 1-adrenergic receptors is temperature dependent; a 100-fold higher affinity is observed at 4 degrees C than at 37 degrees C. The relationship between these two agonist affinity states was investigated by using a strategy that allows the kinetics of this transition to be examined under equilibrium conditions. When competition assays are performed at 37 degrees C for varying intervals and the reaction mixture is then rapidly cooled by freezing, allowed to thaw, and further equilibrated at 4 degrees C, a rapid and progressive decrease (t1/2 of 1-2 min) in agonist affinity occurs, the extent of which is directly related to the incubation time at 37 degrees C. This decrease in agonist affinity is sustained as long as agonist is present but can be reversed by its subsequent removal. In contrast, no change in affinity is seen in identical experiments when antagonists are employed as the competing ligand. High-affinity binding of agonists is also demonstrated in short-term nonequilibrium experiments, indicating that the low-temperature incubations do not induce, but rather stabilize, a receptor conformation of high affinity for agonists. These findings suggest that the predominantly low-affinity binding of agonists to alpha 1-adrenergic receptors demonstrated in equilibrium studies at physiological temperatures may be the result of a ligand-driven decrease in affinity. Since the transition in receptor affinity for agonists occurs not only in broken-cell preparations but also after detergent solubilization of the membrane receptor, it most likely is due to an agonist-induced change in the conformation of the receptor protein per se.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of short term stimulation of beta-adrenergic receptors and elevations in intracellular cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle cells in vitro has been studied using both the 45Ca2+ flux technique and [3H] nitrendipine-binding experiments. Isoproterenol increased the nitrendipine-sensitive 45Ca2+ influx under depolarizing conditions. The effects of isoproterenol were additive to those of depolarization and were antagonized by alprenolol. Half-maximal inhibition of 45Ca2+ influx induced both by depolarization and by isoproterenol occurred at a nitrendipine concentration of 1 nM. Treatments that resulted in an increased level of intracellular cyclic AMP, such as treatment with 1-methyl-3-isobutylxanthine, theophylline, dibutyryl cyclic AMP, or 8-bromocyclic AMP also resulted in an increased rate of 45Ca2+ entry via nitrendipine-sensitive Ca2+ channel. In contrast, long term treatment of myotubes in culture with isoproterenol and other compounds that increased intracellular cyclic AMP led to a large increase in the number of nitrendipine receptors. This increase was accompanied by a 4-10-fold decrease in the affinity of the receptors for nitrendipine. Alprenolol inhibited the long term effects of isoproterenol. In vivo treatment of 7-day-old chicks with reserpine and alprenolol produced a decrease in the number of skeletal muscle nitrendipine receptors. This decrease in receptor number was accompanied by an increase in the affinity of nitrendipine for its receptor by a factor of 4 to 5. These effects on the nitrendipine receptor were prevented by simultaneous injection of isoproterenol. The results are discussed in relation to the role of beta-adrenergic receptors and intracellular cyclic AMP in the regulation of skeletal muscle Ca2+ channels.  相似文献   

17.
We recently demonstrated that heterologous desensitization of adenylate cyclase in turkey erythrocytes is highly correlated with phosphorylation of the beta-adrenergic receptor. In contrast, little is known of the biochemical mechanisms underlying the homologous form of beta-adrenergic receptor desensitization, which is agonist-specific and not cAMP-mediated. Accordingly, the present studies were undertaken to examine if phosphorylation of the beta-adrenergic receptor is also associated with this form of desensitization in a well studied model system, the frog erythrocyte. Preincubation of these cells with the beta-adrenergic agonist isoproterenol leads to a 45% decline in isoproterenol-stimulated adenylate cyclase activity without significant changes in basal, prostaglandin E1-, NaF-, guanyl-5'-yl-imidodiphosphate-, forskolin-, or MnCl2-stimulated enzyme activities. There is also a 48% decline in [125I]iodocyanopindolol membrane binding sites. Conversely, preincubation of the cells with prostaglandin E1 attenuates only the prostaglandin E1-stimulated enzyme activity and does not affect [125I]iodocyanopindolol binding. Phosphorylation of the beta-adrenergic receptor was assessed by preincubating the cells with 32Pi and desensitizing them, and subsequently purifying the receptors by affinity chromatography. Under basal conditions there is about 0.62 mol of phosphate/mol of receptor whereas after desensitization with isoproterenol this increases to 1.9 mol/mol. This isoproterenol-induced receptor phosphorylation exhibits stereospecificity and is blocked by the beta-adrenergic antagonist propranolol. In addition, preincubation with prostaglandin E1 does not promote beta-adrenergic receptor phosphorylation. These data suggest that receptor phosphorylation is involved in homologous as well as heterologous forms of desensitization and may provide a unifying mechanism for desensitization of adenylate cyclase-coupled hormone receptors.  相似文献   

18.
We investigated the binding characteristics of agonists to alpha 1- and beta-adrenergic receptors of intact liver cells, broken rat liver cell membranes, and detergent-solubilized preparations under varying experimental conditions, focusing on the different "states" of the receptor for agonists and the regulation of these states by temperature and guanine nucleotides. While only low-affinity binding of agonists to both receptor subtypes was evident in studies performed at 37 degrees C with solubilized preparations, biphasic competition curves for agonists were observed in both intact cells and membrane preparations; the majority of sites were of low affinity. In membrane preparations, the nonhydrolyzable GTP analogue Gpp(NH)p caused a rightward shift of agonist competition curves and a loss of high-affinity binding. These results are consistent with the involvement of guanine nucleotide binding proteins in both alpha 1- and beta-adrenergic transduction pathways. When competition studies were performed at 4 degrees C, receptor sites existed predominantly in the high-affinity configuration, in intact cells and membranes, as well as in soluble preparations. In contrast to the studies conducted at 37 degrees C, no Gpp(NH)p-induced conversion to the lower affinity state could be demonstrated in studies performed with membrane preparations at 4 degrees C. Thus, the high-affinity state of alpha 1- and beta-adrenergic receptors is stabilized at 4 degrees C in intact cells, membranes, and soluble preparations. After incubations had been performed at 37 degrees C, high-affinity binding of agonists could not be restored by subsequent incubation at 4 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The neuropeptide somatostatin potentiates beta-adrenergic receptor-mediated cAMP formation in astrocytes derived from neonatal rat cortex but does not affect cAMP levels by itself. beta-Adrenergic receptors in these cells can be specifically labeled with the high affinity antagonist [125I] cyanopindolol ([125I]CYP). In addition, astrocytes display both high and low affinity binding sites for the agonist isoproterenol, which are thought to represent receptors which are coupled or uncoupled, respectively, to the guanine nucleotide regulatory protein. We find that somatostatin does not modify beta-receptor density, nor receptor affinity for either the antagonist ([125I]CYP) or for the agonist isoproterenol. In the presence of the guanine nucleotide analogue, Gpp(NH)p, only low affinity (uncoupled) displacement of [125I]CYP binding by isoproterenol is observed. However, somatostatin (1 microM), when added to the cells together with Gpp(NH)p, prevents the nucleotide-induced loss of the high affinity (coupled) component of agonist displacement. This result suggests that somatostatin increases noradrenaline-induced cAMP production by enhancing coupling between the beta-receptor and the stimulatory guanine nucleotide regulatory protein.  相似文献   

20.
The beta-adrenergic catecholamine isoproterenol produces a large, rapid, but often a transient, elevation in cellular content of cyclic AMP. We have used the S49 mouse lymphoma cell line, in which genetic variants with specific defects in the pathway of cyclic AMP generation and function have been isolated, to study the increase and subsequent decrease in cyclic AMP levels (termed refractoriness) following incubation of cells with isoproterenol. In wild type S49 cells, isoproterenol produces a peak response in the cellular content of cyclic AMP within 30 min, but the cyclic AMP level falls rapidly thereafter, approaching basal levels by 6 h. Neither inactivation of the drug nor secretion of a nonspecific inhibitor of adenylate cyclase appears to account for the refractoriness. Because isoproterenol refractory cells can still be stimulated by cholera toxin, refractoriness to isoproterenol does not represent a generalized decrease in cellular cyclic AMP response. Particulate preparations from refractory cells have a selective loss of isoproterenol-responsive adenylate cyclase activity, but their activation constants and stereoselectivity for (-)- and (+)-isoproterenol are unaltered. In addition, refractory cells have decreased specific binding of the beta-adrenergic antagonist [125I]iodohydroxybenzylpindolol. This decrease appears to represent a reduction in the number, but not the affinity, of beta-adrenergic receptor sites. Similar studies in an S49 clone that lacks the enzyme cyclic AMP-dependent protein kinase yield essentially identical findings. Because kinase-deficient cells do not induce the cyclic AMP-degrading enzyme phosphodiesterase after the cellular content of cyclic AMP is increased, induced of phosphodiesterase cannot account for refractoriness to isoproterenol. Cyclic AMP-dependent protein kinase does not appear to be required for either the decrease in beta-adrenergic receptors and isoproterenol-responsive adenylate cyclase, nor does it appear to be required for the development of refractoriness to isoproterenol. In contrast, an S49 clone lacking hormone-responsive adenylate cyclase activity but retaining beta-adrenergic receptors does not appear to lose receptors after being incubated with isoproterenol, either alone or together with dibutyryl cyclic AMP. Therefore, in this clone, receptor occupancy alone or in combination with elevated cyclic AMP levels is insufficient to cause refractoriness. Refractoriness thus appears to require intact adenylate cyclase. This suggests that adenylate cyclase may exert regulatory controls on beta-adrenergic receptors in addition to generation of cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号