首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulation of beta-amyloid protein (Abeta) in the brain is a key feature of Alzheimer's disease (AD). The build-up of aggregated forms of Abeta leads to synaptic loss and to cognitive dysfunction. Although the pathways controlling production and aggregation of Abeta are well studied, the mechanisms that drive the spread of neurodegeneration in the brain are unclear. Here, the idea is presented that AD progresses as a consequence of synaptic scaling, a type of neuronal plasticity that helps maintain synaptic signal strength. Recent studies indicate that brain-derived neurotrophic factor, tumour necrosis factor-alpha and alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) regulate synaptic scaling in the AD brain. It is suggested that further studies on synaptic scaling in AD could reveal new targets for therapeutic drug development.  相似文献   

2.
The role of inflammation in Alzheimer's disease   总被引:9,自引:0,他引:9  
Considerable evidence gained over the past decade has supported the conclusion that neuroinflammation is associated with Alzheimer's disease (AD) pathology. Inflammatory components related to AD neuroinflammation include brain cells such as microglia and astrocytes, the classic and alternate pathways of the complement system, the pentraxin acute-phase proteins, neuronal-type nicotinic acetylcholine receptors (AChRs), peroxisomal proliferators-activated receptors (PPARs), as well as cytokines and chemokines. Both the microglia and astrocytes have been shown to generate beta-amyloid protein (Abeta), one of the main pathologic features of AD. Abeta itself has been shown to act as a pro-inflammatory agent causing the activation of many of the inflammatory components. Further substantiation for the role of neuroinflammation in AD has come from studies that demonstrate patients who took non-steroidal anti-inflammatory drugs had a lower risk of AD than those who did not. These same results have led to increased interest in pursuing anti-inflammatory therapy for AD but with poor results. On the other hand, increasing amount of data suggest that AChRs and PPARs are involved in AD-induced neuroinflammation and in this regard, future therapy may focus on their specific targeting in the AD brain.  相似文献   

3.
Amyloid-beta (Abeta) plaques and neurofibrillary tangles are the hallmark neuropathological lesions of Alzheimer's disease (AD). Using a triple transgenic model (3xTg-AD) that develops both lesions in AD-relevant brain regions, we determined the consequence of Abeta clearance on the development of tau pathology. Here we show that Abeta immunotherapy reduces not only extracellular Abeta plaques but also intracellular Abeta accumulation and most notably leads to the clearance of early tau pathology. We find that Abeta deposits are cleared first and subsequently reemerge prior to the tau pathology, indicative of a hierarchical and direct relationship between Abeta and tau. The clearance of the tau pathology is mediated by the proteasome and is dependent on the phosphorylation state of tau, as hyperphosphorylated tau aggregates are unaffected by the Abeta antibody treatment. These findings indicate that Abeta immunization may be useful for clearing both hallmark lesions of AD, provided that intervention occurs early in the disease course.  相似文献   

4.
Ren J  Qin C  Hu F  Tan J  Qiu L  Zhao S  Feng G  Luo M 《Neuron》2011,69(3):445-452
Acetylcholine is an important neurotransmitter, and the habenulo-interpeduncular projection is a major cholinergic pathway in the brain. To study the physiological properties of cholinergic transmission in the interpeduncular nucleus (IPN), we used a transgenic mouse line in which the light-gated cation channel ChannelRhodopsin-2 is selectively expressed in cholinergic neurons. Cholinergic axonal terminals were activated by light pulses, and postsynaptic responses were recorded from IPN neurons. Surprisingly, brief photostimulation produces fast excitatory postsynaptic currents that are mediated by ionotropic glutamate receptors, suggesting wired transmission of glutamate. By contrast, tetanic photostimulation generates slow inward currents that are largely mediated by nicotinic acetylcholine receptors, suggesting volume transmission of acetylcholine. Finally, vesicular transporters for glutamate and acetylcholine are coexpressed on the same axonal terminals in the IPN. These results strongly suggest that adult brain "cholinergic" neurons can corelease glutamate and acetylcholine, but these two neurotransmitters activate postsynaptic neurons via different transmission modes.  相似文献   

5.
Several cholinesterase inhibitors used in the treatment of Alzheimer's disease (AD) have been shown to interact with an allosteric site on the nicotinic acetylcholine receptor (nAChR). A possible linkage between the phosphorylation state of tau, the major component of paired helical filaments found in AD brain, and stimulation of nAChRs by cholinesterase inhibitors and nicotinic agonists was investigated. Western blot analysis showed that treatment of SH-SY5Y cells for 72 h with the cholinesterase inhibitors tacrine (10(-5) M), donepezil (10(-5) M), and galanthamine (10(-5) M), nicotine (10(-5) M), and epibatidine (10(-7) M) increased tau levels as detected with Tau-1, AT 8, and AT 270 monoclonal antibodies and binding of [3H]epibatidine. The increase in tau immunoreactivity induced by nicotine, epibatidine, and tacrine, but not the up-regulation of nAChRs, was prevented by the antagonists d-tubocurarine and mecamylamine. Both antagonists were synergistic with the nicotinic agonists in causing up-regulation, but only d-tubocurarine showed a synergistic effect with tacrine. The increased tau immunoreactivity induced by tacrine was not prevented by atropine, indicating that in terms of cholinergic receptors, tacrine modulates tau levels mainly through interactions with nAChRs and not with muscarinic receptors. Additional work is needed to determine the exact mechanism by which cholinesterase inhibitors and nicotinic agonists modulate phosphorylation and levels of tau protein.  相似文献   

6.
The two major neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterised by low levels in the brain of the neurotransmitters acetylcholine (ACh) and dopamine (DA), respectively. Clinical treatment of these two conditions is palliative and relies, in most cases, on improving stimulation at the relevant receptors by either increasing levels of the endogenous neurotransmitter or by the use of substances which have a similar agonist response. Natural products continue to provide useful drugs in their own right but also provide templates for the development of other compounds. The major advances in the treatment of AD have been the use of acetylcholinesterase inhibitors such as galantamine, huperzine A, physostigmine and its derivatives to increase the levels of ACh rather than the use of cholinergic compounds, although compounds with nicotinic properties have attracted some interest. In contrast, the treatment of PD has relied on the elevation of DA levels by use of L-DOPA, its precursor, and by the administration of dopaminergic agonists, especially the ergot alkaloid derivatives. The use of inhibitors of enzymes that cause breakdown of DA is an avenue which is being explored. As well as the major natural products of clinical interest, the paper discusses the chemistry, activity and usage of the constituents of plants used in traditional medicine for the treatment of diseases presenting symptoms similar to those characteristic for Alzheimer's or Parkinson's disease.  相似文献   

7.
Amyloid beta peptide (Aβ) is not only a major constituent of extracellular fibrillary pathologies in Alzheimer's disease (AD) brains, but is also physiologically produced and metabolized in neurons. This fact led us to the notion that an age-related decrease in Aβ catabolism may contribute to the molecular pathogenesis of AD, providing a rationale for seeking proteolytic enzymes that degrade Aβ in the brain. Our recent studies have demonstrated that neprilysin is the most potent Aβ-degrading enzyme in vivo. Deficiency of endogenous neprilysin elevates the level of Aβ in brains of neprilysin-knockout mice in a gene dose-dependent manner, and an age-associated decline of neprilysin occurs in several regions of mouse brain. Neuropathological alterations in these same regions have been implicated in cognitive impairments of AD patients at an early stage of the disease. Furthermore, the level of neprilysin mRNA has been found to be significantly and selectively reduced in the hippocampus and temporal cortex of AD patients. A clarification of the role played by decreased neprilysin activity in the pathogenesis of AD has opened up the possibility of neprilysin up-regulation as a novel preventive and therapeutic approach to AD. Since the expression level and activity of neprilysin are likely to be regulated by neuropeptides and their receptors, non-peptidic agonists for these receptors might be effective agents to maintain a sufficient level of Aβ catabolism in brains of the elderly.In addition to Aβ deposits, intraneuronal fibrillary lesions, such as neurofibrillary tangles, are also a pathological hallmark of AD, and the extent of the resultant cytoskeletal disruptions may be dependent upon the activity levels of proteolytic enzymes. Among proteases for which major cytoskeletal components are good substrates, calpains were shown to participate in excitotoxic stress-induced neuritic degeneration in our recent analysis using genetically engineered mice. Moreover, we have found that this pathology can be reduced by controlling the activity of an endogenous calpain inhibitor known as calpastatin, providing a possible approach for the treatment of diverse neurodegenerative disorders, including AD.  相似文献   

8.
The cholinergic system is a neuromodulatory neurotransmitter system involved in a variety of brain processes, including learning and memory, attention, and motor processes, among others. The influence of nicotinic acetylcholine receptors of the cholinergic system are moderated by lynx proteins, which are GPI-anchored membrane proteins forming tight associations with nicotinic receptors. Previous studies indicate lynx1 inhibits nicotinic receptor function and limits neuronal plasticity. We sought to investigate the mechanism of action of lynx1 on nicotinic receptor function, through the generation of lynx mouse models, expressing a soluble version of lynx and comparing results to the full length overexpression. Using rotarod as a test for motor learning, we found that expressing a secreted variant of lynx leads to motor learning enhancements whereas overexpression of full-length lynx had no effect. Further, adult lynx1KO mice demonstrated comparable motor learning enhancements as the soluble transgenic lines, whereas previously, aged lynx1KO mice showed performance augmentation only with nicotine treatment. From this we conclude the motor learning is more sensitive to loss of lynx function, and that the GPI anchor plays a role in the normal function of the lynx protein. In addition, our data suggests that the lynx gene plays a modulatory role in the brain during aging, and that a soluble version of lynx has potential as a tool for adjusting cholinergic-dependent plasticity and learning mechanisms in the brain.  相似文献   

9.
Spirolides are marine compounds of the cyclic imine group. Although the mechanism of action is not fully elucidated yet, cholinergic (muscarinic and nicotinic) receptors have been proposed as the main targets of these toxins. In this study we examined the effect of 13-desmethyl spirolide-C (SPX) on amyloid-beta (Aβ) accumulation and tau hyperphosphorylation in a neuronal model from triple transgenic mice (3xTg) for Alzheimer disease (AD). In vitro treatment of 3xTg cortical neurons with SPX reduced intracellular Aβ accumulation and the levels of phosphorylated tau. SPX treatment did not affect the steady-state levels of neither the M1 and M2 muscarinic nor the α7 nicotinic acetylcholine receptors (AChRs), while it decreased the amplitude of acetylcholine-evoked responses and increased ACh (acetylcholine) levels in 3xTg neurons. Additionally, SPX treatment decreased the levels of two protein kinases involved in tau phosphorylation, glycogen synthase kinase 3β (GSK-3β) and extracellular-regulated kinase (ERK). Also SPX abolished the glutamate-induced neurotoxicity in both control and 3xTg neurons. The results presented here constitute the first report indicating that exposure of 3xTg neurons to nontoxic concentrations of SPX produces a simultaneous reduction in the main pathological characteristics of AD. In spite of the few reports analyzing the mode of action of the toxin we suggest that SPX could ameliorate AD pathology increasing the intracellular ACh levels and simultaneously diminishing the levels of kinases involved in tau phosphorylation.  相似文献   

10.
Previous investigators have detected unknown oxidized forms of 5-hydroxytryptamine (5-HT) in the CSF of Alzheimer's disease (AD) patients. Furthermore, an unidentified autoxidation product of this neurotransmitter is an inhibitor of acetylcholinesterase (AChE), an enzyme compromised in the Alzheimer brain. In this study it is demonstrated that the major product of autoxidation of 5-HT is 5,5'-dihydroxy-4,4'-bitryptamine (DHBT). Central administration of DHBT to mice at a dose of 40 micrograms (free base) evokes profound behavioral responses, which persist until the animals die (approximately 24 h). One hour after central administration of DHBT, the levels of norepinephrine, dopamine, 5-HT, and acetylcholine and their metabolites in whole brain are greatly elevated. Disturbances to the catecholaminergic and serotonergic systems were still evident shortly before the death of animals. DHBT is also shown to be a noncompetitive inhibitor of AChE in vitro. These observations suggest that if DHBT is formed as an aberrant metabolite of 5-HT in the human brain, it could potentially be neurotoxic and contribute to the neuronal degeneration and other neurochemical and neurobiochemical changes associated with AD or perhaps other neurodegenerative diseases.  相似文献   

11.
Reduction of brain amyloid-β (Aβ) has been proposed as a therapeutic target for Alzheimer disease (AD), and microglial Aβ phagocytosis is noted as an Aβ clearance system in brains. Galantamine is an acetylcholinesterase inhibitor approved for symptomatic treatment of AD. Galantamine also acts as an allosterically potentiating ligand (APL) for nicotinic acetylcholine receptors (nAChRs). APL-binding site is located close to but distinct from that for acetylcholine on nAChRs, and FK1 antibody specifically binds to the APL-binding site without interfering with the acetylcholine-binding site. We found that in human AD brain, microglia accumulated on Aβ deposits and expressed α7 nAChRs including the APL-binding site recognized with FK1 antibody. Treatment of rat microglia with galantamine significantly enhanced microglial Aβ phagocytosis, and acetylcholine competitive antagonists as well as FK1 antibody inhibited the enhancement. Thus, the galantamine-enhanced microglial Aβ phagocytosis required the combined actions of an acetylcholine competitive agonist and the APL for nAChRs. Indeed, depletion of choline, an acetylcholine-competitive α7 nAChR agonist, from the culture medium impeded the enhancement. Similarly, Ca(2+) depletion or inhibition of the calmodulin-dependent pathways for the actin reorganization abolished the enhancement. These results suggest that galantamine sensitizes microglial α7 nAChRs to choline and induces Ca(2+) influx into microglia. The Ca(2+)-induced intracellular signaling cascades may then stimulate Aβ phagocytosis through the actin reorganization. We further demonstrated that galantamine treatment facilitated Aβ clearance in brains of rodent AD models. In conclusion, we propose a further advantage of galantamine in clinical AD treatment and microglial nAChRs as a new therapeutic target.  相似文献   

12.
Alzheimer disease (AD) is characterized by accumulation of the neurotoxic amyloid beta peptide (Abeta) and by the loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) throughout the brain. Direct inhibition of nAChRs by Abeta has also been suggested to contribute to cholinergic dysfunction in AD. In an effort to find ligands capable of blocking Abeta-induced inhibition of nAChRs, we have screened a phage display library to identify peptides that bind to Abeta. Using this approach, we identified a heptapeptide denoted IQ, which binds with nanomolar affinity to Abeta and is homologous to the acetylcholine-binding protein and to most subtypes of nAChRs. Rapid kinetic whole-cell current-recording measurements showed that Abeta inhibits nAChR function in a dose-dependent manner in neuronal differentiated PC12 cells and that nanomolar concentrations of IQ completely block the inhibition by Abeta. These results indicate that the Abeta binding site in nAChRs is homologous to the IQ peptide and that this is a relevant target for Abeta neurotoxicity in AD and, more generally, for the regulation of nAChR function by soluble Abeta in a physiological context. Furthermore, the results suggest that the IQ peptide may be a lead for the development of novel drugs to block the inhibition of nAChRs in AD.  相似文献   

13.
A new subunit, beta 2, of the neuronal nicotinic receptor family has been identified. This subunit has the structural features of a non-agonist-binding subunit. We provide evidence that beta 2 can substitute for the muscle beta 1 subunit to form a functional nicotinic receptor in Xenopus oocytes. Expression studies performed in oocytes have demonstrated that three different neuronal nicotinic acetylcholine receptors can be formed by the pairwise injection of beta 2 mRNA and each of the neuronal alpha subunit mRNAs. The beta 2 gene is expressed in PC12 cells and in areas of the central nervous system where the alpha 2, alpha 3, and alpha 4 genes are expressed. These results lead us to propose that the nervous system expresses diverse forms of neuronal nicotinic acetylcholine receptors by combining beta 2 subunits with different agonist-binding alpha subunits.  相似文献   

14.
Deficits of cortical nicotinic acetylcholine receptors (nAChRs) have been observed in Alzheimer's disease (AD) by receptor binding assays. Little is known about the receptor subunit specificity influenced by AD, and it might be of importance for therapeutic strategies. In the present study, the protein levels of nAChR alpha3, alpha4, alpha7, and beta2 subunits were investigated using western blot analysis on postmortem brains of patients with AD and age-matched controls. The results showed that in human postmortem brain samples, bands with molecular masses of 52, 42, and 50 kDa were detected by anti-alpha4, anti-alpha7, and anti-beta2 antibodies, respectively. When anti-alpha3 antibody was used, one major band of 49 kDa and two minor bands of 70 and 38 kDa were detected. In AD patients, as compared with age-matched controls, the alpha4 subunit was reduced significantly by approximately 35 and 47% in the hippocampus and temporal cortex, respectively. A significant reduction of 25% in the alpha3 subunit was also observed in the hippocampus and a 29% reduction in the temporal cortex. For the alpha7 subunit, the protein level was reduced significantly by 36% in the hippocampus of AD patients, but no significant change was detected in the temporal cortex. In neither the hippocampus nor the temporal cortex was a significant difference observed in the beta2 subunit between AD patients and controls. These results reveal brain region-specific changes in the protein levels of the nAChR alpha3, alpha4, and alpha7 subunits in AD.  相似文献   

15.
Nicotinic acetylcholine receptors play important roles in numerous cognitive processes as well as in several debilitating central nervous system (CNS) disorders. In order to fully elucidate the diverse roles of nicotinic acetylcholine receptors in CNS function and dysfunction, a detailed knowledge of their cellular and subcellular localizations is essential. To date, methods to precisely localize nicotinic acetylcholine receptors in the CNS have predominantly relied on the use of anti-receptor subunit antibodies. Although data obtained by immunohistology and immunoblotting are generally in accordance with ligand binding studies, some discrepancies remain, in particular with electrophysiological findings. In this context, nicotinic acetylcholine receptor subunit-deficient mice should be ideal tools for testing the specificity of subunit-directed antibodies. Here, we used standard protocols for immunohistochemistry and western blotting to examine the antibodies raised against the alpha3-, alpha4-, alpha7-, beta2-, and beta4-nicotinic acetylcholine receptor subunits on brain tissues of the respective knock-out mice. Unexpectedly, for each of the antibodies tested, immunoreactivity was the same in wild-type and knock-out mice. These data imply that, under commonly used conditions, these antibodies are not suited for immunolocalization. Thus, particular caution should be exerted with regards to the experimental approach used to visualize nicotinic acetylcholine receptors in the brain.  相似文献   

16.
Currently, there are no effective therapies to ameliorate the pathological progression of Alzheimer's disease (AD). Evidence suggests that environmental factors may contribute to AD. Notably, dietary nutrients are suggested to play a key role in mediating mechanisms associated with brain function. Choline is a B‐like vitamin nutrient found in common foods that is important in various cell functions. It serves as a methyl donor and as a precursor for production of cell membranes. Choline is also the precursor for acetylcholine, a neurotransmitter which activates the alpha7 nicotinic acetylcholine receptor (α7nAchR), and also acts as an agonist for the Sigma‐1 R (σ1R). These receptors regulate CNS immune response, and their dysregulation contributes to AD pathogenesis. Here, we tested whether dietary choline supplementation throughout life reduces AD‐like pathology and rescues memory deficits in the APP/PS1 mouse model of AD. We exposed female APP/PS1 and NonTg mice to either a control choline (1.1 g/kg choline chloride) or a choline‐supplemented diet (5.0 g/kg choline chloride) from 2.5 to 10 months of age. Mice were tested in the Morris water maze to assess spatial memory followed by neuropathological evaluation. Lifelong choline supplementation significantly reduced amyloid‐β plaque load and improved spatial memory in APP/PS1 mice. Mechanistically, these changes were linked to a decrease of the amyloidogenic processing of APP, reductions in disease‐associated microglial activation, and a downregulation of the α7nAch and σ1 receptors. Our results demonstrate that lifelong choline supplementation produces profound benefits and suggest that simply modifying diet throughout life may reduce AD pathology.  相似文献   

17.
The cannabinoid CB1 receptor has gained much attention as a potential pharmacotherapeutic target in various neurodegenerative diseases including Alzheimer's disease (AD). However, the relation of CB1 receptors to cognitive function in AD is at present unclear. In this study, postmortem brain tissues from a cohort of prospectively assessed, neuropathologically confirmed AD patients and aged controls were used to measure CB1 receptors by immunoblotting, and a subset of subjects also had [(3)H]SR141716A binding. Correlational analyses were then performed for the neurochemical and cognitive data. We found that CB1 receptor levels in were unchanged AD in the brain regions assessed (frontal cortex, anterior cingulate gyrus, hippocampus, caudate nucleus). Within the AD group, frontal cortical CB1 immunoreactivity correlated with cognitive scores assessed within a year of death. Our study suggests that CB1 receptors are intact in AD and may play a role in preserving cognitive function. Therefore, CB1 receptors should be further assessed as a potential therapeutic target in AD.  相似文献   

18.
Structural and functional impairments of mitochondria in brain tissues in the pathogenesis of Alzheimer’s disease (AD) cause energy deficiency, increased generation of reactive oxygen species (ROS), and premature neuronal death. However, the causal relations between accumulation of beta-amyloid (Aβ) peptide in mitochondria and mitochondrial dysfunction, as well as molecular mechanisms underlying deleterious effects of both these factors in sporadic AD, the most common form in humans, remain unknown. Here we used olfactory bulbectomized (OBX) mice of NMRI strain as a model for sporadic AD. Five weeks after surgery, the OBX mice developed major behavioral and biochemical features of AD neurodegeneration, including spatial memory loss, increased brain levels of Aβ, and energy deficiency. Mitochondria isolated from the neocortex and hippocampus of OBX mice displayed severe functional impairments, such as low NADH oxidation rate, reduced transmembrane potential, and decreased cytochrome c oxidase (complex IV) activity that correlated with high levels of soluble Aβ1-40. Mitochondria from OBX mice showed increased contents of lipid peroxidation products, indicative of the development of oxidative stress. We found that neurodegeneration caused by olfactory bulbectomy is accompanied by energy metabolism disturbances and oxidative stress in brain mitochondria similar to those occurring in transgenic animals–familial AD models and patients with sporadic AD. Therefore, OBX mice can serve as a valid AD model for investigating the mechanisms of AD neurodegeneration, drug testing, and development of therapeutic strategies for AD treatment.  相似文献   

19.
Neuronal nicotinic acetylcholine receptors labelled with tritiated agonists are reduced in the cerebral cortex in Alzheimer's disease (AD), but to date it has not been demonstrated which nicotinic receptor subunits contribute to this deficit. In the present study, autopsy tissue from the temporal cortex of 14 AD cases and 15 age-matched control subjects was compared using immunoblotting with antibodies against recombinant peptides specific for alpha3, alpha4, and alpha7 subunits, in conjunction with [3H]epibatidine binding. Antibodies to alpha3, alpha4, and alpha7 produced one major band on western blots at 59, 51, and 57 kDa, respectively. [3H]Epibatidine binding and alpha4-like immunoreactivity (using antibodies against the extracellular domain and cytoplasmic loop of the alpha4 subunit) were reduced in AD cases compared with control subjects (p < 0.02) and with a subgroup of control subjects (n = 9) who did not smoke prior to death (p < 0.05) for the former two parameters. [3H]Epibatidine binding and cytoplasmic alpha4-like immunoreactivity were significantly elevated in a subgroup of control subjects (n = 4) known to have smoked prior to death (p < 0.05). There were no significant changes in alpha3- or alpha7-like immunoreactivity associated with AD or tobacco use. The selective involvement of alpha4 has implications for understanding the role of nicotinic receptors in AD and potential therapeutic targets.  相似文献   

20.
Previously we have demonstrated the presence of presynaptic nicotinic acetylcholine receptors on the terminals of myenteric neurons in Auerbach's plexus of guinea-pig ileum. During these studies we observed, that the presence of hemicholinium-3, an inhibitor of the high affinity choline uptake significantly influences the contraction of the longitudinal muscle strip preparation. Our aim was to investigate the neurochemical background of this effect and quantitatively characterize the action of HC-3. We studied the effect of HC-3 on epibatidine- and electrical stimulation-evoked contraction and release of [3H]acetylcholine from the guinea-pig longitudinal muscle strip preparation. We found that in the presence of tetrodotoxin, when the contribution of somatodendritic nicotinic acetylcholine receptors to the response was prevented due to the inhibition of axonal conduction, HC-3 inhibited the epibatidine-evoked contraction and [3H]acetylcholine release in the submicromolar range (IC50 = 897 nM and IC50 = 693 nM, respectively), whereas the electrical stimulation-evoked contraction was not affected by HC-3, and the release of [3H]acetylcholine was apparently enhanced. Our data indicate that HC-3 inhibits the presynaptic nicotinic acetylcholine receptors of myenteric neurons. Since these receptors play an important role in the regulation of cholinergic neurotransmission in the enteric nervous system, the use of HC-3 in [3H]acetylcholine release experiments might bias the interpretation of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号