首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-dependent adsorption behavior of poly(3-hydroxybutyrate) (PHB) depolymerase from Ralstonia pickettiiT1 on a polyester surface was studied by complementary techniques of quarts crystal microbalance (QCM) and atomic force microscopy (AFM). Amorphous poly(l-lactide) (PLLA) thin films were used as adsorption substrates. Effects of enzyme concentration on adsorption onto the PLLA surface were determined time-dependently by QCM. Adsorption of PHB depolymerase took place immediately after replacement of the buffer solutions with the enzyme solutions in the cell, followed by a gradual increase in the amount over 30 min. The amount of PHB depolymerase molecules adsorbed on the surface of amorphous PLLA thin films increased with an increase in the enzyme concentration. Time-dependent AFM observation of enzyme molecules was performed during the adsorption of PHB depolymerase. The phase response of the AFM signal revealed that the nature of the PLLA surface around the PHB depolymerase molecule was changed due to the adsorption function of the enzyme and that PHB depolymerase adsorbed onto the PLLA surface as a monolayer at a lower enzyme concentration. The number of PHB depolymerase molecules on the PLLA surface depended on the enzyme concentration and adsorption time. In addition, the height of the adsorbed enzyme was found to increase with time when the PLLA surface was crowded with the enzymes. In the case of higher enzyme concentrations, multilayered PHB depolymerases were observed on the PLLA thin film. These QCM and AFM results indicate that two-step adsorption of PHB depolymerase occurs on the amorphous PLLA thin film. First, adsorption of PHB depolymerase molecules takes place through the characteristic interaction between the binding domain of PHB depolymerase and the free surface of an amorphous PLLA thin film. As the adsorption proceeded, the surface region of the thin film was almost covered with the enzyme, which was accompanied by morphological changes. Second, the hydrophobic interactions among the enzymes in the adlayer and the solution become more dominant to stack as a second layer.  相似文献   

2.
乙酸对土壤胶体矿物吸附酸性磷酸酶的影响   总被引:2,自引:2,他引:0  
研究了不同pH值、不同浓度乙酸对酸性磷酸酶在土壤胶体和矿物表面吸附的影响,结果表明,在pH2~8的乙酸体系中,酶在胶体矿物表面的最大吸附pH一般出现在蛋白的等电点和矿物的零电荷点(PZC)之间,各土壤胶体和粘粒矿物对酶的吸附量大小顺序为针铁矿》黄棕壤>砖红壤>高岭石>二氧化锰,乙酸浓度对酶在胶体矿物表面的吸附量和吸附结合能具有较显著影响,在0~200mmol·L^-1范围内,随着乙酸浓度的增加,酶吸附量呈现先升高、后降低、再稳定的趋势,而吸附结合能的变化与此相反,并就乙酸对酶在胶体矿物表面吸附影响的可能机理进行了初步探讨。  相似文献   

3.
Tetracycline resistance element of pBR322 mediates potassium transport   总被引:13,自引:10,他引:3       下载免费PDF全文
High concentrations of choline and phosphorylcholine blocked the adsorption of pneumococcal autolytic enzyme to homologous cell walls and inhibited enzymatic cell wall hydrolysis in a noncompetitive manner. Enzyme adsorption had an absolute requirement for the presence of choline residues in the wall teichoic acid. Other amino alcohols and derivatives such as ethanolamine, monomethylaminoethanolamine , and phosphorylethanolamine had no effect on enzyme adsorption or hydrolytic activity. It is proposed that enzymatic hydrolysis of cell walls requires prior adsorption of enzyme molecules to the insoluble wall substrate and that cholin residues of the wall teichoic acid have the role of adsorption ligands in this process.  相似文献   

4.
Adsorption reversibility and competition between fractionated components of the Trichoderma reesei cellulase system were studied. Specific endoglucanase (EGI), nonspecific endoglucanases (EGII, EGIII), and cellobio-hydrolase (CBHI) were previously grouped according to their hydrolytic function. At 5 degrees C, direct evidence of exchange between adsorbed and free enzyme was obtained for each component using [(3)H] and [(14)C] radiolabeled tracers. No release of bound enzymes was detected upon dilution of the free enzyme solution. In simultaneous adsorption of enzyme pairs, CBHI was shown to predominate adsorption. Endoglucanase EGI was preferentially adsorbed over EGII and EGIII. Sequential adsorption studies have shown that interaction between enzyme components largely determines the degree of their adsorption. Evidence suggests that both common and distinct adsorption sites exist and that their occupation depends on which components are involved. Predominance in adsorption by any one of the enzyme components is decreased at 50 degrees C. Light microscopy and monitoring of sugar production during cellulose hydrolysis provided evidence that reduction in the ionic strength decreases the adsorption predominance of CBHI and enhances the synergism between the cellulase components.  相似文献   

5.
Enzyme adsorption in porous supports: local thermodynamic equilibrium model   总被引:1,自引:0,他引:1  
Enzyme adsorption from a finite bath (batch adsorption) onto porous spherical supports is investigated both experimentally and theoretically using beta-galactosidase and Duolite ion-exchange resin as a model system. Efficient numerical techniques are presented that have been used in conjunction with a parameter estimation routine to evaluate adsorption isotherm constants. Results show that even for adsorption processes lasting almost 10 h, the majority of the enzyme is confined to the outer half of the support and, for high initial enzyme concentrations in the bath, this loading takes place as a slowly moving front. Information on the enzyme distribution has practical importance in the design of immobilized enzyme reactors that in previous works have almost always been analyzed assuming a uniform catalyst distribution.  相似文献   

6.
A one-step procedure using affinity chromatography has been shown to purify to apparent homogeneity acetate kinase from a commercially available preparation and to partially purify the enzyme from a crude, cell-free extract. Since the gel's capacity for enzyme adsorption is controlled by the thermodynamics of ligand-enzyme interaction, maximization of the adsorption isotherm was attempted. Enzyme adsorption decreased logarithmically with increasing ionic strength but increased with increasing concentration of MgCl2. These competing effects caused the net adsorption of enzyme to increase to a maximum and then to decrease as the MgCl2 concentration was raised. The results allow a significant improvement in affinity column performance and have important implications for scale-up procedures.  相似文献   

7.
Enzyme structure and function depend to some extent on enzyme net charge and charge location. Altering the charge of even a single residue may affect the interaction between enzyme and substrate such that all catalytic activity is lost. In this study we investigated the effect of net charge and charge location on the enzymatic activity of synthetic mutants of bacteriophage T4 lysozyme in the presence of colloidal silica. Enzymatic activity decreased upon adsorption, and these changes were variant-specific. Results were interpreted with reference to differences in adsorbed enzyme structure and orientation, and electrostatic effects. By exploring the effects of enzyme charge on adsorption, it may be possible to gain a better understanding of how enzyme structure influences adsorption and function at an interface.  相似文献   

8.
Sphingomyelinase of Bacillus cereus proved to be specifically adsorbed onto mammalian erythrocyte membranes in the presence of either Ca2+ or Ca2+ plus Mg2+ in the order of sphingomyelin content; i.e., sheep, bovine greater than porcine greater than rat erythrocytes. No appreciable adsorption was observed in the presence of Mg2+ alone nor in the absence of divalent metal ions. The enzyme adsorption onto bovine erythrocytes was dependent upon the incubation temperature. By shifting the temperature from 37 to 0 degrees C, sphingomyelinase once adsorbed onto the surface of bovine erythrocytes was released into the supernatant. Ca2+ proved to be an essential factor for the enzyme adsorption: The addition of 1 mM Ca2+ enhanced the adsorptive process, but inhibited sphingomyelin hydrolysis and hot or hot-cold hemolysis of erythrocytes, while the addition of 1 mM Ca2+ plus 1 mM Mg2+ enhanced sphingomyelin breakdown and hemolysis as well as the enzyme adsorption. However, when the amount of sphingomyelin fell off to 0.2-0.7 nmol/ml or less by the action of sphingomyelinase, the enzyme once adsorbed was completely released from the surface of erythrocytes. The result indicates that the major binding site for sphingomyelinase is sphingomyelin. In the presence of 1 mM Mg2+ alone, the enzymatic hydrolysis of sphingomyelin and hemolysis proceeded whereas the enzyme adsorption was not encountered during 60 min incubation at 37 degrees C. The change in the molar ratio of Ca2+ to Mg2+ affected the enzyme adsorption and sphingomyelin breakdown; the higher Ca2+ enhanced the adsorption whereas the higher Mg2+ stimulated sphingomyelin hydrolysis.  相似文献   

9.
Two rate equations have been developed to model the hydrolysis of ground lean meat protein by Alcalase. The first equation was based on classical Michaelis-Menten kinetics and the second on the adsorption of enzyme to the protein prior to reaction. It was assumed that this adsorption could be modelled by a Langmuir-type adsorption isotherm. Each equation considered the enzyme to be competitively inhibited by reaction product, and considered enzyme inactivation to be first order. Both rate equations have been fitted to experimental data obtained from the hydrolysis of meat protein by Alcalase. Initial rate data indicated that the adsorption model was more appropriate. However, both equations gave satisfactory fits to 11 reaction progress curves determined over a wide range of enzyme and substrate concentrations.  相似文献   

10.
We used ethylenediaminetetraacetic acid dianhydride (EDTAD) to modify oxalate decarboxylase (OXDC) to improve its adsorption on calcium oxalate stones. The modified sites were identified by Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and the adsorption mechanism of the EDTAD-modified OXDC on calcium oxalate (CaOx) was investigated. We investigated adsorption time, initial enzyme concentration, temperature and solution pH on the adsorption process. Data were analyzed using kinetics, thermodynamics and isotherm adsorption models. UPLC-MS showed that EDTAD was attached to OXDC covalently and suggested that the chemical modification occurred at both the free amino of the side chain and the α-NH2 of the peptide. The adsorption capacity of the EDTAD-OXDC on calcium oxalate was 53.37% greater than that of OXDC at the initial enzyme concentration of 5 mg/ml, pH = 7.0, at 37° C. The modified enzyme (EDTAD-OXDC) demonstrated improved oxalate degradation activity at pH 4.5?6.0. Kinetic data fitting analysis suggested a pseudo second order kinetic model. Estimates of the thermodynamic parameters including ΔG0, ΔH0 and ΔS0 of the adsorption process showed it to be feasible, spontaneous and endothermic. Isotherm data fitting analysis indicated that the adsorption process is reduced to monolayer adsorption at a low enzyme concentration and to multilayer adsorption at a high enzyme concentration. It may be possible to apply OXDC to degradation of calcium oxalate stones.  相似文献   

11.
Enzymes released extracellularly by micro-organisms have major functions in nutrient acquisition and organic matter degradation. Clay particles, common in many surface waters, can modify enzyme activity. Clay minerals are known to form aggregates with organic molecules, and the formation of enzyme-clay complexes could alter the level of activity. Montmorillonite clay and clay extracted from Elledge Lake (Tuscaloosa, Alabama) basin soil were combined with alkaline phosphatase, glucosidase, protease, and xylosidase solutions to assess adsorption and the effect of this adsorption on enzyme activity. Adsorption to Elledge Lake basin clay decreased alkaline phosphatase activity, and adsorption to montmorillonite was observed for all four enzymes with reductions in enzyme activities. Adsorption of substrate onto clay surfaces resulted in a concentration effect and increased enzyme activity associated with the particles. When enzyme-clay complexes were exposed to natural sunlight there was a decrease in enzyme activity, but this decrease was usually not significantly different from the adsorption only treatment. The formation of enzyme-clay complexes may serve to protect the enzymes from natural in situ photodegradation. The results indicate the complex interactive effects adsorption of enzymes to clay particles can have on the availability and capability of hydrolysis – reduction of enzyme reactivity, storage attached to clay particles with changes in transport and distribution, and protection from photodegradation.  相似文献   

12.
T Tsujita  H L Brockman 《Biochemistry》1987,26(25):8423-8429
The chemical specificity of the adsorption of porcine pancreatic carboxyl ester lipase to pure lipid surfaces was examined. Adsorption of native and catalytically inactivated enzyme was measured at the argon-buffer interface by using lipid films near the point of collapse. Protein adsorbed readily to films of triolein, 1,3-diolein, methyl oleate, oleonitrile, oleyl alcohol, and 13,16-docosadienoic acid. However, recovery of enzyme activity was variable. These differences and the changes in surface pressure accompanying adsorption indicated the occurrence of enzyme denaturation at the interface. Denaturation was controlled largely by surface free energy but showed some chemical specificity at high surface pressures. Adsorption of protein to the lipids was comparable when measured under either equilibrium or initial rate conditions. Together with surface pressure changes that accompany adsorption, the data indicate a relative lack of specificity for the enzyme-surface interaction. Adsorption to 13,16-docosadienoic acid and 1,3-diolein obeyed the Langmuir adsorption isotherm. Dissociation constants ranged from 10 to 50 nM, depending on enzyme form, ionic strength, and pH. With both lipids, a monolayer of enzyme was adsorbed at saturation. In contrast to these results, adsorption of enzyme activity and protein to films of 1-palmitoyl-2-oleoyl-phosphatidylcholine was less than or equal to 5% of that observed with the other lipids under all conditions. Comparison of rate constants for adsorption to 13,16-docosadienoic and 1,3-diolein as a function of subphase pH indicated a marked dependence on the ionization state of the fatty acid. Overall, the data suggest that the presence of zwitterionic and anionic lipids may regulate the interaction of the enzyme with substrate-containing surfaces in vivo.  相似文献   

13.
The adsorption mode of two highly purified cellulases, exo- and endo-type cellulases, from Irpex lacteus (Polyporus tulipiferae) was investigated by using pure cellulosic materials with different crystallinity as substrates. Adsorption of the two enzymes on the substrates was found to fit the Langmuir-type adsorption isotherm. Maximum amount of adsorbed enzyme obtained from the Langmuir plots showed an inverse correlation to the crystallinity of the substrate with both enzymes, and this value of endo-type cellulase was less dependent on the degree of crystallinity of substrates than that of exo-type cellulase, whose isotherms reached saturation in the range of low enzyme concentrations. The two enzymes showed relatively high affinities for all the substrates and their affinities increased with increasing crystallinity, but this tendency was less marked with endo-type cellulase than with exo-type one. In addition, large negative values of free energy change were observed on the adsorption of both enzymes, and the values became more negative with increasing crystallinity. Consequently, both cellulases showed high adsorption on crystalline cellulose and the adsorption process became smoother with increasing crystallinity. The adsorption of the two types of cellulases was endothermic with an increase in entropy, especially for amorphous cellulose, suggesting the occurrence of water release from the substrates during enzyme adsorption. In addition, the changes in thermodynamic parameters (delta H, delta S, and delta G) in adsorption of exo-type cellulase were larger than in that of endo-type enzyme.  相似文献   

14.
The adsorption of cellulase on cellulose and a lignacious residue was examined by using cellulase from Trichoderma reesei, hardwood pretreated by dilute sulfuric acid under high pressure, and a lignacious residue prepared by a complete enzymatic hydrolysis of the pretreated wood. A significant amount of cellulase was found to adsorb on the lignacious residue during the hydrolysis of the pretreated wood. Hence, the adsorption of enzyme on the lignacious residue as well as cellulose must be taken into account in the development of the hydrolysis kinetics. It was found that the adsorption of enzyme on cellulose and on the lignacious residue could be represented by Langmuir type isotherms. The data show that the pretreatment at a higher temperature results in more enzyme adsorption on the cellulose fraction and less on the lignacious residue fraction. The relationship between the hydrolysis rate and the amount of enzyme adsorbed is discussed.  相似文献   

15.
A kinetic model incorporating dynamic adsorption, enzymatic hydrolysis, and product inhibition was developed for enzymatic hydrolysis of differently pretreated fibers from a nitrogen-rich lignocellulosic material-dairy manure. The effects of manure proteins on the enzyme adsorption profile during hydrolysis have been discussed. Enzyme activity, instead of protein concentration, was used to describe the enzymatic hydrolysis in order to avoid the effect of manure protein on enzyme protein analysis. Dynamic enzyme adsorption was modeled based on a Langmiur-type isotherm. A first-order reaction was applied to model the hydrolysis with consideration being given for the product inhibition. The model satisfactorily predicted the behaviors of enzyme adsorption, hydrolysis, and product inhibition for all five sample manure fibers. The reaction conditions were the substrate concentrations of 10-50 g/L, enzyme loadings of 7-150 FPU/g total substrate, and the reaction temperature of 50 degrees C.  相似文献   

16.
The adsorption of the enzyme glucose oxidase (EC 1.1.3.4) to clays followed the pattern described for other proteins as being pH dependent. Maximum adsorption occurred at or below the isoelectric point of the enzyme. The amount of enzyme adsorbed to clay was influenced by the type of clay used, and also the saturating cations. Initially adsorbed enzyme showed low specific activities, and as amounts of enzyme adsorbed approached maximum stauration of clay, specific activities increased approaching that determined for free enzyme. The adsorption of glucose oxidase involved a temperature-independent cation-exchange mechanism, and enzyme adsorbed to surfaces of clay could be desorbed in active form by elevation of pH of suspending solution. This was followed by a slower temperature-dependent fixation, probably by hydrogen bonding, which resulted in protein being irreversibly adsorbed to clay surfaces. It is proposed that on adsorption of glucose oxidase to clay surfaces unravelling of the protein structure occurred, which allowed penetration of protein into the interlamellar spaces of montmorillonite. This proposal was based on the observed expansion of montmorillonite to 23 A, and the decreases in amount of a second-protein lysozyme adsorbed with extended incubation times of glucose oxidase - clay complexes at pH 4.5.  相似文献   

17.
Summary Isotherms for adsorption of chitinase on chitin and lysozyme on chitin have been determined at two temperatures and rates of hydrolysis of chitin catalysed by these enzymes have been measured at three temperatures and at several enzyme concentrations for each. Ribonuclease, not an enzyme for chitin, and heat-denatured lysozyme and chitinase show reduced or no adsorption to this substrate.Initial hydrolysis rates of chitin by both enzymes are proportional to total enzyme concentrations in the range of concentrations studied. These kinetics cannot, however, be related to the adsorption isotherms because of the non-equilibrium nature of the isotherms.  相似文献   

18.
The adsorption of water and substrate on immobilized Candida antarctica lipase B was studied by performing adsorption isotherm measurements and using inverse gas chromatography (IGC). Water adsorption isotherm of the immobilized enzyme showed singular profile absorption incompatible with the Brunauer-Emmet-Teller model, probably due to the hydrophobic nature of the support, leading to very low interactions with water. IGC allowed determining the evolution with water thermodynamic activity (a(W)) of both dispersive surface energies and acidity and basicity constants of immobilized enzyme. These results showed that water molecules progressively covered immobilized enzyme, when increasing a(W), leading to a saturation of polar groups above a(W) 0.1 and full coverage of the surface above a(W) 0.25. IGC also enabled relevant experiments to investigate the behavior of substrates under a(W) that they will experience, in a competitive situation with water. Results indicated that substrates had to displace water molecules in order to adsorb on the enzyme from a(W) values ranging from 0.1 to 0.2, depending on the substrate. As the conditions used for these adsorption studies resemble the ones of the continuous enzymatic solid/gas reactor, in which activity and selectivity of the lipase were extensively studied, it was possible to link adsorption results with particular effects of water on enzyme properties.  相似文献   

19.
Vermiculite, an inert and cheap solid support material, was used in the immobilization of protease by adsorption. Adsorption of protease on vermiculite saturated with potassium, calcium and aluminium was studied. Aluminium saturated vermiculite adsorbed maximum amount of enzyme at pH 6.5. The maximum adsorption of enzyme on cationic vermiculite occurred within one hour at 30°C. When the temperature was increased there was a two fold increase in the adsorption of the enzyme. From the Freundlich isotherm data, the values of k and n were computed.  相似文献   

20.
Adsorption on crystalline cellulose of six endoglucanases (Endo I, II, III, IV, V and VI; 1, 4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) and two exoglucanases (Exo II and III; 1,4-beta-D-glucan cellobiohydrolase, EC 3.2.1.92), purified from a commercial cellulase preparation of Trichoderma viride origin, was studied. Endo I, III, and V adsorbed strongly on Avicel cellulose, while adsorption of Endo II, IV, and VI was much lower. Also, the two exoglucanases could be divided into one enzyme (Exo III) that had a high adsorption affinity and another enzyme (Exo II) that adsorbed only moderately. Adsorption data fitted the Langmuir-type adsorption isotherm. However, adsorption was only partially reversible with respect to dilution. No relation could be found between adsorption affinity and degree of randomness in cellulose hydrolysis, measured as the diversity of released hydrolytic products. Kinetic measurements indicated that only part of the adsorbed enzyme molecules are hydrolytically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号