首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfur is an essential macro-element in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of adaptive responses, which must be coordinated. To reveal the coordinating network of adaptations to sulfur deficiency, metabolite profiling of Arabidopsis has been undertaken. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques revealed the response patterns of 6,023 peaks of nonredundant ion traces and relative concentration levels of 134 nonredundant compounds of known chemical structure. Here, we provide a catalogue of the detected metabolic changes and reconstruct the coordinating network of their mutual influences. The observed decrease in biomass, as well as in levels of proteins, chlorophylls, and total RNA, gives evidence for a general reduction of metabolic activity under conditions of depleted sulfur supply. This is achieved by a systemic adjustment of metabolism involving the major metabolic pathways. Sulfur/carbon/nitrogen are partitioned by accumulation of metabolites along the pathway O-acetylserine to serine to glycine, and are further channeled together with the nitrogen-rich compound glutamine into allantoin. Mutual influences between sulfur assimilation, nitrogen imbalance, lipid breakdown, purine metabolism, and enhanced photorespiration associated with sulfur-deficiency stress are revealed in this study. These responses may be assembled into a global scheme of metabolic regulation induced by sulfur nutritional stress, which optimizes resources for seed production.  相似文献   

2.
The antifungal activities of many sulfur-containing defense compounds suggest a connection between pathogen infection, primary sulfur metabolism and sulfate nutritional status of plants. This relationship was investigated using Arabidopsis thaliana plants that were cultivated under different sulfur regimes and challenged by Alternaria brassicicola. Plants grown with 500 μM sulfate were significantly less infected compared to plants grown on 50 μM sulfate. Upon infection, the formation of the sulfur-containing defense compound camalexin and the gene expression of the sulfur-rich defense peptide defensin were clearly enhanced in plants grown with an optimal compared to a sufficient sulfate supply in the growth medium. Elevated levels of sulfite and O-acetylserine and cysteine biosynthetic enzymes after infection indicated a stimulation of sulfur metabolism under the higher sulfate supply. The results suggest that, in addition to pathogen-triggered activation of sulfur metabolism and sulfur-containing defense compound formation, the sulfate nutritional status is sensed to contribute to plant defense.  相似文献   

3.
Abstract: The significance of root nitrate reductase for sulfur assimilation was studied in tobacco (Nicotiana tabacum) plants. For this purpose, uptake, assimilation, and long-distance transport of sulfur were compared between wild-type tobacco and transformants lacking root nitrate reductase, cultivated either with nitrate or with ammonium nitrate. A recently developed empirical model of plant internal nitrogen cycling was adapted to sulfur and applied to characterise whole plant sulfur relations in wild-type tobacco and the transformant. Both transformation and nitrogen nutrition strongly affected sulfur pools and sulfur fluxes. Transformation decreased the rate of sulfate uptake in nitrate-grown plants and root sulfate and total sulfur contents in root biomass, irrespective of N nutrition. Nevertheless, glutathione levels were enhanced in the roots of transformed plants. This may be a consequence of enhanced APR activity in the leaves that also resulted in enhanced organic sulfur content in the leaves of the tranformants. The lack of nitrate reductase in the roots in the transformants caused regulatory changes in sulfur metabolism that resembled those observed under nitrogen deficiency. Nitrate nutrition reduced total sulfur content and all the major fractions analysed in the leaves, but not in the roots, compared to ammonium nitrate supply. The enhanced organic sulfur and glutathione levels in ammonium nitrate-fed plants corresponded well to elevated APR activity. But foliar sulfate contents also increased due to decreased re-allocation of sulfate into the phloem of ammonium nitrate-fed plants. Further studies will elucidate whether this decrease is achieved by downregulation of a specific sulfate transporter in vascular tissues.  相似文献   

4.
Due to the clean air acts and subsequent reduction of emission of gaseous sulfur compounds sulfur deficiency became one of the major nutrient disorders in Northern Europe. Typical sulfur deficiency symptoms can be diagnosed. Especially plants of the Cruciferae family are more susceptible against pathogen attack. Sulfur fertilization can in part recover or even increase resistance against pathogens in comparison to sulfur-deficient plants. The term sulfur-induced resistance (SIR) was introduced, however, the molecular basis for SIR is largely unknown. There are several sulfur-containing compounds in plants which might be involved in SIR, such as high levels of thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur, or H2S. Probably more than one strategy is used by plants. Species- or even variety-dependent differences in the development of SIR are probably used. Our research focussed mainly on the release of H2S as defence strategy. In field experiments using different BRASSICA NAPUS genotypes it was shown that the genetic differences among BRASSICA genotypes lead to differences in sulfur content and L-cysteine desulfhydrase activity. Another field experiment demonstrated that sulfur supply and infection with PYRENOPEZIZA BRASSICA influenced L-cysteine desulfhydrase activity in BRASSICA NAPUS. Cysteine-degrading enzymes such as cysteine desulfhydrases are hypothesized to be involved in H2S release. Several L- and D-cysteine-specific desulfhydrase candidates have been isolated and partially analyzed from the model plant ARABIDOPSIS THALIANA. However, it cannot be excluded that H2S is also released in a partial back reaction of O-acetyl-L-serine(thiol)lyase or enzymes not yet characterized. For the exact determination of the H2S concentration in the cell a H2S-specific microsensor was used the first time for plant cells. The transfer of the results obtained for application back on BRASSICA was initiated.  相似文献   

5.
Sulfate assimilation is a pathway providing reduced sulfur for the synthesis of cysteine, methionine, co-enzymes such as iron-sulfur centres, thiamine, lipoic acid, or Coenzyme A, and many secondary metabolites, e.g., glucosinolates or alliins. The pathway is relatively well understood in flowering plants, but very little information exists on sulfate assimilation in basal land plants. Since the finding of a putative 3'-phosphoadenosine 5'-phosphosulfate reductase in PHYSCOMITRELLA PATENS, an enigmatic enzyme thought to exist in fungi and some bacteria only, it has been evident that sulfur metabolism in lower plants may substantially differ from seed plant models. The genomic sequencing of two basal plant species, the Bryophyte PHYSCOMITRELLA PATENS, and the Lycophyte SELAGINELLA MOELLENDORFFII, opens up the possibility to search for differences between lower and higher plants at the genomic level. Here we describe the similarities and differences in the organisation of the sulfate assimilation pathway between basal and advanced land plants derived from genome comparisons of these two species with ARABIDOPSIS THALIANA and ORYZA SATIVA, two seed plants with sequenced genomes. We found differences in the number of genes encoding sulfate transporters, adenosine 5'-phosphosulfate reductase, and sulfite reductase between the lower and higher plants. The consequences for regulation of the pathway and evolution of sulfate assimilation in plants are discussed.  相似文献   

6.
The importance of the ectomycorrhiza symbiosis for plant acquisition of phosphorus and nitrogen is well established whereas its contribution to sulfur nutrition is only marginally understood. In a first step to investigate the role of ectomycorrhiza in plant sulfur nutrition, we characterized sulfate and glutathione uptake in Laccaria bicolor. By studying the regulation of sulfate uptake in this ectomycorrhizal fungus, we found that in contrast to bacteria, yeast, and plants, sulfate uptake in L. bicolor was not feedback-inhibited by glutathione. On the other hand, sulfate uptake was increased by sulfur starvation as in other organisms. The activity of 3′-phosphoadenosine 5′-phosphosulfate reductase, the key enzyme of the assimilatory sulfate reduction pathway in fungi, was increased by sulfur starvation and decreased after treatment with glutathione revealing an uncoupling of sulfate uptake and reduction in the presence of reduced sulfur compounds. These results support the hypothesis that L. bicolor increases sulfate supply to the plant by extended sulfate uptake and the plant provides the ectomycorrhizal fungus with reduced sulfur.  相似文献   

7.
The effect of sulfur limitation on the partitioning of carbon, nitrogen, and sulfur was investigated in Dunaliella salina. D. salina was able to adapt to 6 microM sulfate; under these conditions, the cells showed reduced growth and photosynthetic rates. Whereas intracellular sulfate was depleted, phosphate, nitrate, and ammonium increased. Amino acids showed a general increase, and alanine became the most abundant amino acid. The activities of four key enzymes of carbon, sulfur, and nitrogen metabolism were differentially regulated: Adenosine 5' triphosphate sulfurylase activity increased 4-fold, nitrate reductase and phosphoenolpyruvate (PEP) carboxylase activities decreased 4- and 11-fold, respectively, whereas carbonic anhydrase activity remained unchanged. Sulfur limitation elicited specific increase or decrease of the abundance of several proteins, such us Rubisco, PEP carboxylase, and a light harvesting complex protein. The accumulation of potentially toxic ammonium indicates an insufficient availability of carbon skeletons. Sulfur deficiency thus induces an imbalance between carbon and nitrogen. The dramatic reduction in PEP carboxylase activity suggests that carbon was diverted away from anaplerosis and possibly channeled into C3 metabolism. These results indicate that it is the coordination of key steps and components of carbon, nitrogen, and sulfur metabolism that allows D. salina to adapt to prolonged sulfur limitation.  相似文献   

8.
It is now well established that plant cell wall oligosaccharides can stimulate or inhibit growth and development in plants. In addition, it has been determined that seaweed (marine algae) cell wall polysaccharides and derived oligosaccharides can enhance growth in plants. In particular, oligo-alginates obtained by depolymerization of alginates from brown seaweeds increase growth of different plants by enhancing nitrogen assimilation and basal metabolism. Interestingly, oligo-alginates also stimulate growth of marine and fresh water green microalgae, increasing the content of fatty acids. On the other hand, oligo-carrageenans obtained by depolymerization of carrageenans from red seaweeds increase growth of tobacco plants by enhancing photosynthesis, nitrogen assimilation, basal metabolism, and cell division. In addition, oligo-carrageenans increase protection against viral, fungal, and bacterial infections in tobacco plants, which is determined, at least in part, by the accumulation of several phenylpropanoid compounds (PPCs) with antimicrobial activity. Moreover, oligo-carrageenans stimulate growth of 3-year-old Eucalyptus globulus trees by increasing photosynthesis, nitrogen assimilation, and basal metabolism. Furthermore, oligo-carrageenans induce an increase in cellulose content and in the level of essential oil and some PPCs with antimicrobial activities, suggesting that defense against pathogens may be also enhanced. Thus, seaweed oligosaccharides induce a dual beneficial effect in plants and trees, enhancing growth, which is determined by the increase in carbon and nitrogen assimilation, basal metabolism, and cell division, and defense against pathogens, which is determined by the accumulation of compounds with antimicrobial activities. In this sense, molecular mechanisms that potentially interconnect activation of plant growth and defense responses are discussed.  相似文献   

9.
Sulfur Metabolism in Plants: Are Trees Different?   总被引:1,自引:0,他引:1  
Sulfur metabolite levels and sulfur metabolism have been studied in a significant number of herbaceous and woody plant species. However, only a limited number of datasets are comparable and can be used to identify similarities and differences between these two groups of plants. From these data, it appears that large differences in sulfur metabolite levels, as well as the genetic organization of sulfate assimilation and metabolism do not exist between herbaceous plants and trees. The general response of sulfur metabolism to internal and/or external stimuli, such as oxidative stress, seems to be conserved between the two groups of plants. Thus, it can be expected that, generally, the molecular mechanisms of regulation of sulfur metabolism will also be similar. However, significant differences have been found in fine tuning of the regulation of sulfur metabolism and in developmental regulation of sulfur metabolite levels. It seems that the homeostasis of sulfur metabolism in trees is more robust than in herbaceous plants and a greater change in conditions is necessary to initiate a response in trees. This view is consistent with the requirement for highly flexible defence strategies in woody plant species as a consequence of longevity. In addition, seasonal growth of perennial plants exerts changes in sulfur metabolite levels and regulation that currently are not understood. In this review, similarities and differences in sulfur metabolite levels, sulfur assimilation and its regulation are characterized and future areas of research are identified.  相似文献   

10.
11.
Sulfur-induced resistance, also known as sulfur-enhanced defense (SIR/SED) was investigated in Nicotiana tabacum cv. Samsun nn during compatible interaction with Tobacco mosaic virus (TMV) in correlation with glutathione metabolism. To evaluate the influence of sulfur nutritional status on virus infection, tobacco plants were treated with nutrient solutions containing either sufficient sulfate (+S) or no sulfate (-S). Sufficient sulfate supply resulted in a suppressed and delayed symptom development and diminished virus accumulation over a period of 14 days after inoculation as compared with -S conditions. Expression of the defense marker gene PR-1a was markedly upregulated in sulfate-treated plants during the first day after TMV inoculation. The occurrence of SIR/SED correlated with a higher level of activity of sulfate assimilation, cysteine, and glutathione metabolism in plants treated with sulfate. Additionally, two key genes involved in cysteine and glutathione biosynthesis (encoding adenosine 5'-phosphosulfate reductase and γ-glutamylcysteine synthetase, respectively) were upregulated within the first day after TMV inoculation under +S conditions. Sulfate withdrawal from the soil was accelerated at the beginning of the infection, whereas it declined in the long term, leading to an accumulation of sulfur in the soil of plants grown with sulfate. This observation could be correlated with a decrease in sulfur contents in TMV-infected leaves in the long term. In summary, this is the first study that demonstrates a link between the activation of cysteine and glutathione metabolism and the induction of SIR/SED during a compatible plant-virus interaction in tobacco plants, indicating a general mechanism behind SIR/SED.  相似文献   

12.
Hell R  Jost R  Berkowitz O  Wirtz M 《Amino acids》2002,22(3):245-257
Summary. Among the amino acids produced by plants cysteine plays a special role as a mediator between assimilatory sulfate reduction and provision of reduced sulfur for cell metabolism. Part of this characteristic feature is the presence of cysteine synthesis in plastids, mitochondria and cytosol. Plants are the major source of reduced sulfur for human and animal nutrition. Cysteine biosynthesis deserves special attention, since reduced sulfur is channelled from cysteine into many sulfur-containing compounds in food and feed. Recent investigations are reviewed that focus on structure and regulation of cysteine synthesis in the model plant Arabidopsis thaliana. These data indicate that cysteine synthesis is not just an intermediate reaction step but that it is part of a regulatory network that mediates between inorganic sulfur supply and the demand for reduced sulfur during plant growth and in response to environmental changes. Received December 3, 2001 Accepted December 21, 2001  相似文献   

13.
14.
植物硫营养代谢、调控与生物学功能   总被引:14,自引:0,他引:14  
植物作为无机硫的主要还原者,在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢,以及一系列具有重要生物学功能的含硫代谢产物的合成,不但与植物生长发育、耐逆和抗病虫害等密切相关,而且影响农作物产量与品质。硫营养的代谢和调控非常复杂,且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展,同时讨论了该领域悬而未决的重要生物学问题和研究动向,进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

15.
植物作为无机硫的主要还原者, 在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢, 以及一系列具有重要生物学功能的含硫代谢产物的合成, 不但与植物生长发育、耐逆和抗病虫害等密切相关, 而且影响农作物产量与品质。硫营养的代谢和调控非常复杂, 且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展, 同时讨论了该领域悬而未决的重要生物学问题和研究动向, 进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

16.
Legumes form tripartite interactions with arbuscular mycorrhizal fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter (SWEET) family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits.  相似文献   

17.
This study evaluated the effects of arsenic (As) exposure on carbon, nitrogen, and sulfur (CNS) metabolism in Brassica juncea. Two contrasting, tolerant (TPM-1) and sensitive (TM-4), varieties of B. Juncea were selected and grown either in control sand (150 g) or in sand containing 10 mg of arsenate. Harvesting was performed at 7 and 15 days and various metabolites and enzymes of CNS as well as γ-aminobutyric acid (GABA) metabolism were analyzed. At 7 days, TM-4 showed significantly higher As accumulation and stressed phenotype with increase in superoxide radicals, malondialdehyde, and cell death, as compared with TPM-1. However, the level of hydrogen peroxide was higher in TPM-1 than in TM-4. The level of GABA and the activity of glutamate decarboxylase increased in both roots and shoots of TPM-1, but not in TM-4. The level of nitrate and sulfate increased and decreased in shoots of TPM-1 and TM-4, respectively. The supply of fumarate and succinate was maintained in both shoots and roots of TPM-1 while it was only in shoots of TM-4. There was significant alteration in the profile of amino acids and in sulfur and nitrogen metabolism. However, at 15 days, As accumulation of both varieties was found to be similar along with an increase in GABA, nitrate, and sulfate in both shoots and roots except sulfate in TM-4. Supply of fumarate and succinate was also maintained and other responses were found to be similar in TPM-1 and TM-4. The study demonstrates that responses of CNS metabolism differ in varietal and time-dependent manner.  相似文献   

18.
As sulfur constitutes one of the macronutrients necessary for the plant life cycle, sulfur uptake and assimilation in higher plants is one of the crucial factors determining plant growth and vigour, crop yield and even resistance to pests and stresses. Inorganic sulfate is mostly taken up as sulfate from the soil through the root system or to a lesser extent as volatile sulfur compounds from the air. In a cascade of enzymatic steps inorganic sulfur is converted to the nutritionally important sulfur-containing amino acids cysteine and methionine (Hell, 1997; Hell and Rennenberg, 1998; Saito, 1999). Sulfate uptake and allocation between plant organs or within the cell is mediated by specific transporters localised in plant membranes. Several functionally different sulfate transporters have to be postulated and have been already cloned from a number of plant species (Clarkson et al., 1993; Hawkesford and Smith, 1997; Takahashi et al., 1997; Yamaguchi, 1997). Following import into the plant and transport to the final site of reduction, the plastid, the chemically relatively inert sulfate molecule is activated through binding to ATP forming adenosine-5'-phosphosulfate (APS). This enzymatic step is controlled through the enzyme ATP-sulfurylase (ATP-S). APS can be further phosphorylated to form 3'-phosphoadenosine-5'-phosphosulfate (PAPS) which serves as sulfate donor for the formation of sulfate esters such as the biosynthesis of sulfolipids (Schmidt and J?ger, 1992). However, most of the APS is reduced to sulfide through the enzymes APS-reductase (APR) and sulfite reductase (SIR). The carbon backbone of cysteine is provided through serine, thus directly coupling photosynthetic processes and nitrogen metabolism to sulfur assimilation. L-serine is activated by serine acetyltransferase (SAT) through the transfer to an acetyl-group from acetyl coenzyme A to form O-acetyl-L-serine (OAS) which is then sulhydrylated using sulfide through the enzyme O-acetyl-L-serine thiol lyase (OAS-TL) forming cysteine. Cysteine is the central precursor of all organic molecules containing reduced sulfur ranging from the amino acid methionine to peptides as glutathione or phytochelatines, proteines, vitamines, cofactors as SAM and hormones. Cysteine and derived metabolites display essential roles within plant metabolism such as protein stabilisation through disulfide bridges, stress tolerance to active oxygen species and metals, cofactors for enzymatic reactions as e.g. SAM as major methylgroup donor and plant development and signalling through the volatile hormone ethylene. Cysteine and other metabolites carrying free sulfhydryl groups are commonly termed thioles (confer Fig. 1). The physiological control of the sulfate reduction pathway in higher plants is still not completely understood in all details. The objective of this paper is to summarise the available data on the molecular analysis and control of cysteine biosynthesis in plants, and to discuss potentials for manipulating the pathway using transgenic approaches.  相似文献   

19.
20.
Metabolomics is considered as an emerging new tool for functional proteomics in the identification of new protein function or in projects aiming at modeling whole cell metabolism. When combined with proteome studies, metabolite-profiling analyses revealed unanticipated insights into the yeast sulfur pathway. In response to cadmium, the observed overproduction of glutathione, essential for the detoxification of the metal, can be entirely accounted for by a marked drop in sulfur-containing protein synthesis and a redirection of sulfur metabolite fluxes to the glutathione pathway. A kinetic analysis showed sequential and dramatic changes in intermediate sulfur metabolite pools within the first hours of the treatment. Strikingly, whereas proteome and metabolic data were positively correlated under cadmium conditions, proteome and metabolic data were negatively correlated during other growth conditions, i.e. methionine supplementation or sulfate starvation. These differences can be explained by alternative mechanisms in the regulation of Met4, the activator of the sulfur pathway. Whereas Met4 activity is controlled by the cellular cysteine content in response to sulfur source and availability, the present study suggests that Met4 activation under cadmium conditions is cysteine-independent. The results clearly indicate that the metabolic state of a cell cannot be safely predicted based solely on proteomic and/or gene expression data. Combined metabolome and proteome studies are necessary to draw a comprehensive and integrated view of cell metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号