首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The War of Attrition and the Scotch Auction are instances of a general type of evolutionary game, here referred to as an evolutionary auction. Evolutionary auctions are symmetric, without injury, settled by a single scalar variable (“the bid”), and subject to an overshoot cost function which depends on the difference between the bids. For what appears to be the general class of biologically tenable overshoot cast functions we show that (with the single pathological exception of the Scotch Auction) there is a unique ESS, whose density function is defined on an interval [0, b). Examples are given, and general methods of finding the ESS discussed. Implications for the evolution of animal display behaviour and morphological characters are discussed.  相似文献   

2.
On evolutionarily stable sets   总被引:1,自引:0,他引:1  
As an extension of the concept of an evolutionarily stable strategy (ESS) evolutionarily stable sets are introduced, i.e. sets of equilibrium strategies (EQS) which have much of the properties of an ESS. They are primarily used with evolutionary game models that allow a continuum of EQSs, none of which can be an ESS, but also include common ESSs as a special case. For a large class even of nonlinear models it can be shown that the standard dynamics converge towards some equilibrium point in an ES set if started within a neighbourhood of the set. Important applications of ES sets include e.g. mixed-strategist models and evolutionary game models in sexual populations.  相似文献   

3.
A behavior or strategy which is evolutionarily stable must be both optimal and stable. The strategy must be optimal in that it maximizes the expected fitness of all the individuals using it. In addition, the strategy must be resistant to invasion by a mutant. The difference between the Nash solution of game theory and the ESS used in ecology is that the Nash solution only satisfies an optimality criterion and not an evolutionary stability criterion. We extend the ESS definition of Maynard Smith and Price so that it can be applied directly to two-strategy evolutionary games. The concept of a balanced game is introduced, and necessary conditions are derived which are similar to the Nash necessary conditions. The balanced game necessary conditions may be used for direct calculation of ESS candidates. These results are used to examine the optimal flowering time of an annual plant experiencing competition from neighboring plants. The plant competition model is general, and the results may be applied to a wide range of interference competition problems.  相似文献   

4.
It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer''s dilemma game as an evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial condition (i.e., phenotype or initial strategy of individuals). These different evolutionarily stable strategies (ESS) associated with different initial conditions, can be interpreted as the production modes of public goods of different cooperation systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size or decreasing cost-benefit ratio. Our model shows that the defection probability of a “strong” player is greater than the “weak” players in the model of Diekmann (1993). This contradicts Selten''s (1980) model that public goods can only be produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time. Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by strong players in an asymmetric game.  相似文献   

5.
Zu J  Takeuchi Y 《Bio Systems》2012,109(2):192-202
In this paper, with the method of adaptive dynamics and critical function analysis, we investigate the evolutionary diversification of prey species. We assume that prey species can evolve safer strategies such that it can reduce the predation risk, but this has a cost in terms of its reproduction. First, by using the method of critical function analysis, we identify the general properties of trade-off functions that allow for continuously stable strategy and evolutionary branching in the prey strategy. It is found that if the trade-off curve is globally concave, then the evolutionarily singular strategy is continuously stable. However, if the trade-off curve is concave-convex-concave and the prey's sensitivity to crowding is not strong, then the evolutionarily singular strategy may be an evolutionary branching point, near which the resident and mutant prey can coexist and diverge in their strategies. Second, we find that after branching has occurred in the prey strategy, if the trade-off curve is concave-convex-concave, the prey population will eventually evolve into two different types, which can coexist on the long-term evolutionary timescale. The algebraical analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible for the concave-convex-concave trade-off relationship.  相似文献   

6.
Game theory has been used by some authors to analyse evolutionary limits to the expression of aggression in theoretical haploid parthenogenetic species. Others have examined frequency dependent selection, of which aggression may be a case, by applying population genetic models to diploid species. A model is presented which attempts to combine these two approaches. Game theory is used to determine evolutionarily stable strategies and corresponding stable polymorphisms for a two-strategy game played by members of a diploid sexual species, when choice of strategy is determined by two alleles at a single locus. Results are given for dominant, co-dominant and recessive determination of choice of the more aggressive of two strategies, for two levels of relationship: unrelated players and sibs. It is found that for a range of models of single locus inheritance the evolutionarily stable strategy (ESS) determined for haploid species remains the stable population strategy for diploid sexual species, when players are unrelated. In sibling contestants aggression is reduced. The mixed strategy haploid ESS underestimates, but the pure strategy haploid ESS provides a good indication of the degree to which relatedness lessens aggression in diploid species. For both haploid and diploid species there may be a considerable advantage to confining conflicts to kin.  相似文献   

7.
ABSTRACT

We investigate the problem of how a population of biological species would distribute over a given network of social sites so that their social contacts through the connected sites can be maximized (or minimized). This problem has applications in modelling the behaviours of social (or solitary) species such as the development of social groups in human society and the spread of solitary animals in distant habitats. We show that this problem can be formulated as an evolutionary game, with the equilibrium state of the game corresponding to a strategy for choosing the residing sites, each with a certain probability, or equivalently, to a distribution of the population on these sites. The game has a symmetric payoff matrix, and can therefore be analyzed via the solution of a corresponding quadratic programme: An equilibrium strategy of the game is a KKT point of the quadratic programme, which may be a local maximizer, local minimizer, or saddle point, but it is evolutionarily stable if and only if it is a strict local maximizer. In general, with a goal to maximize the social contacts, the species tend to spread on network sites where there are dense connections such as a complete subnetwork or in other words, a network clique. We show that at equilibrium, the population may or may not distribute on a network clique, but the stability of the equilibrium state does depend on the structure of the selected subnetwork. In particular, we show that the distribution of the population on a maximal network clique is evolutionarily stable unless the clique is ‘attached’ to another clique of the same or larger size, when the population may be able to switch or expand to the neighbouring clique to increase or at least maintain its total amount of contacts. However, the distribution of the population on a non-clique subnetwork is always evolutionarily unstable or weakly evolutionarily stable at the very best, for the population can always move away from its current distribution without decreasing its total amount of contacts. We conclude that the strategies to spread on maximal network cliques are not only equilibrium strategies but also evolutionarily more stable than those on non-clique subnetworks, thus theoretically reaffirming the evolutionary advantages of joining social cliques in social networks for social species.  相似文献   

8.
It is well known that for any evolutionary game there may be more than one evolutionarily stable strategy (ESS). In general, the more ESSs there are, the more difficult it is to work out how the population will behave (unless there are no ESSs at all). If a matrix game has an ESS which allows all possible pure strategies to be played, referred to as an internal ESS, then no other ESS can exist. In fact, the number of ESSs possible is highly dependent upon how many of the pure strategies each allow to be played, their support size. It is shown that if alpha is the ratio of the mean support size to the number of pure strategies n, then as n tends to infinity the greatest number of ESSs can be represented by a continuous function f(alpha) with useful regularity properties, and bounds are found for both f(alpha) and the value alpha(*), where it attains its maximum. Thus we can obtain a limit on the complexity of any particular system as a function of its mean support size.  相似文献   

9.
The possibility of protected polymorphisms and of monomorphic evolutionarily stable strategies for parental investment per offspring in a heterogeneous environment is theoretically analysed. A high density two-niche model of the classical soft selection kind is used, although it incorporates the possibility of rare strategies invading an empty niche the contribution of which is not constant. Protected polymorphisms can be found whether or not both strategies included produce surviving offspring in both niches. However, a monomorphic evolutionarily stable strategy exists unless offspring of the optimal size in one of the niches cannot survive in the other. The robustness of the model is graphically illustrated under a variety of circumstances, and some evolutionary consequences are briefly discussed.  相似文献   

10.
Dynamics are introduced into Maynard Smith's game about the evolution of strategies in animal conflicts. The retaliator strategy is a weak attractor, but this is only a transient property because the game is structurally unstable. When the game is stabilised the retaliator becomes an evolutionarily stable strategy. At the same time another evolutionarily stable strategy appears comprising a mixture of hawks and bullies, and if individuals are allowed to play mixed strategies then this tends to produce a pecking order. Thus the stabilised game offers an explanation for the evolution of hierarchical societies in terms of natural selection acting on individuals.  相似文献   

11.
The formation of a social group, such as the group of individuals sharing a territory, depends on the interaction between choices made by individuals to stay or disperse. The process can be modelled as a multi-player variant of the well-known War of Attrition in evolutionary game theory, as shown by Blackwell (1997; J. Theor. Biol.189, 175-181). In this paper, we extend the set of strategies defined there by allowing reappraisal during the game. We give a formal analysis of the evolutionarily stable strategy, where one exists, and illustrate it with an example based on badger (Meles meles) territoriality. The results predict that group size will be well adapted to, and very sensitive to, the precise conditions under which the game is played, and give an indication of the potential for parent-offspring conflict.  相似文献   

12.
We present an evolutionary game theory. This theory differs in several respects from current theories related to Maynard Smith's pioneering work on evolutionary stable strategies (ESS). Most current work deals with two person matrix games. For these games the strategy set is finite. We consider evolutionary games which are defined over a continuous strategy set and which permit any number of players. Matrix games are included as a bilinear continuous game. However, under our definition, such games will not posses an ESS on the interior of the strategy set. We extend previous work on continuous games by developing an ESS definition which permits the ESS to be composed of a coalition of several strategies. This definition requires that the coalition must not only be stable with respect to perturbations in strategy frequencies which comprise the coalition, but the coalition must also satisfy the requirement that no mutant strategies can invade. Ecological processes are included in the model by explicitly considering population size and density dependent selection.  相似文献   

13.
An evolutionarily stable strategy (ESS) is only required to be capable of resisting invasion by rare mutant strategies. In contrast, an absolute invader strategy (AIS) is a rare mutant strategy that can invade any established strategy. We show that the predictions of the outcome of evolution made by optimization models are compatible with those made by the classical expected payoff comparisons in matrix games. We also show that if a matrix game has an AIS that AIS is unique and is also an ESS. But an ESS need not be an AIS. In pure-strategy submodels, an AIS need not be unique. An AIS of a matrix game has global asymptotic stability property in the game dynamics which involve only pure strategies including the AIS.  相似文献   

14.
Evolutionary stability on graphs   总被引:1,自引:0,他引:1  
Evolutionary stability is a fundamental concept in evolutionary game theory. A strategy is called an evolutionarily stable strategy (ESS), if its monomorphic population rejects the invasion of any other mutant strategy. Recent studies have revealed that population structure can considerably affect evolutionary dynamics. Here we derive the conditions of evolutionary stability for games on graphs. We obtain analytical conditions for regular graphs of degree k>2. Those theoretical predictions are compared with computer simulations for random regular graphs and for lattices. We study three different update rules: birth-death (BD), death-birth (DB), and imitation (IM) updating. Evolutionary stability on sparse graphs does not imply evolutionary stability in a well-mixed population, nor vice versa. We provide a geometrical interpretation of the ESS condition on graphs.  相似文献   

15.
Ross Cressman  Vlastimil Křivan 《Oikos》2010,119(8):1231-1242
In classical games that have been applied to ecology, individual fitness is either density independent or population density is fixed. This article focuses on the habitat selection game where fitness depends on the population density that evolves over time. This model assumes that changes in animal distribution operate on a fast time scale when compared to demographic processes. Of particular interest is whether it is true, as one might expect, that resident phenotypes who use density‐dependent optimal foraging strategies are evolutionarily stable with respect to invasions by mutant strategies. In fact, we show that evolutionary stability does not require that residents use the evolutionarily stable strategy (ESS) at every population density; rather it is the combined resident–mutant system that must be at an evolutionary stable state. That is, the separation of time scales assumption between behavioral and ecological processes does not imply that these processes are independent. When only consumer population dynamics in several habitats are considered (i. e. when resources do not undergo population dynamics), we show that the existence of optimal foragers forces the resident‐mutant system to approach carrying capacity in each habitat even though the mutants do not die out. Thus, the ideal free distribution (IFD) for the single‐species habitat selection game becomes an evolutionarily stable state that describes a mixture of resident and mutant phenotypes rather than a strategy adopted by all individuals in the system. Also discussed is how these results are affected when animal distribution and demographic processes act on the same time scale.  相似文献   

16.
Selten (1980, J. theor. Biol. 84, 93(N)/01) has shown that mixed strategies cannot be evolutionarily stable in asymmetric games. Because every interaction features some asymmetry, this result apparently precludes mixed strategies in an evolutionary setting. In Maynard Smith's Hawk-Dove game (1982, Evolution and the theory of games (UP-Cambridge), for example, Selten's result restricts attention to pure-strategy evolutionarily stable outcomes in which the animals use the ability to condition their actions on asymmetries to coordinate, with one playing Hawk and one playing Dove, and with conflicts in which both animals play Hawk never arising. This result contrasts with the intuition that the mixed equilibrium of the Hawk-Dove game captures important aspects of many animal interactions, including the possibility of conflict. In this paper, we follow Eshel and Sansone (1995, J. theor. Biol. 177, 341-356) in enriching Selten's model to incorporate an important aspect of animal interactions, namely that payoffs and asymmetries may both be imperfectly observed. In the richer model, we find conditions under which effectively mixed strategies are stable in asymmetric games, as well as conditions under which they are not stable. Behavior will be conditioned on asymmetries, leading to pure-strategy equilibria in which conflict is avoided, when there are relatively large, observable asymmetries and small observable variations in payoffs. Under opposite conditions, evolutionarily stable equilibria will appear that are effectively mixed, including the potential for conflict.  相似文献   

17.
Bekoff [J. Consci. Stud. 8 (2001) 81] argued that mammalian social play is a useful behavioral phenotype on which to concentrate in order to learn more about the evolution of fairness. Here, we build a game theoretical model designed to formalize some of the ideas laid out by Bekoff, and to examine whether ‘fair’ strategies can in fact be evolutionarily stable. The models we present examine fairness at two different developmental stages during an individual's ontogeny, and hence we create four strategies—fair at time 1/fair at time 2, not fair at time 1/not fair at time 2, fair at time 1/not fair at time 2, not fair at time 1/fair at time 2. Our results suggest that when considering species where fairness can be expressed during two different developmental stages, acting fairly should be more common than never acting fairly. In addition, when no one strategy was evolutionarily stable, we found that all four strategies we model can coexist at evolutionary equilibrium. Even in the absence of an overwhelming database from which to test our model, the general predictions we make have significant implications for the evolution of fairness.  相似文献   

18.
Summary Since the fitness of each individual organism in a biological community may be affected by the strategies of all other individuals in the community, the essential element of a game exists. This game is an evolutionary game where the individual organisms (players) inherit their strategies from continuous play of the game through time. Here, the strategies are assumed to be constants associated with certain adaptive parameters (such as sunlight conversion efficiency for plants or body length in animals) in a set of differential equations which describe the population dynamics of the community. By means of natural selection, these parameters will evolve to a set of strategy values that natural selection, by itself, can no longer modify, i.e. an evolutionarily stable strategy (ESS). For a given class of models, it is possible to predict the outcome of this evolutionary process by determining ESSs using an ESS maximum principle. However, heretofore, the proof of this principle has been based on a limited set of conditions. Herein, we generalize the proof by removing certain restrictions and use instead the concept of an ecological stable equilibrium (ESE). Individuals in a biological community will be at an ESE if fixing the strategies used by the individuals results in stable population densities subject to perturbations in those densities. We present both necessary and sufficient conditions for an ESE to exist and then use the ESE concept to provide a very simple proof of the ESS maximum principle (which is a necessary condition for an ESS). A simple example is used to illustrate the difference between a strategy that maximizes fitness and one that satisfies the ESS maximum principle. In general they are different. We also look for ESEs in Lotka—Volterra competition and use the maximum principle to determine when an ESE will be an ESS. Finally, we examine the applicability of these ideas to matrix games.  相似文献   

19.
Coevolution is modeled as a continuous game where the fitness-maximizing strategy of an individual is assumed to be a function of the strategy of other individuals who are also under selection to maximize fitness. An evolutionary stable strategy (ESS) is sought such that no rare alternative strategies can invade the community. The approach can be used to model coevolution because the ESS may be composed of a coalition of more than one strategy. This work, by modeling frequency-dependent selection, extends the approach of Roughgarden (1976) which only considered density-dependent selection. In particular, we show that the coevolutionary model of Rummel and Roughgarden (1985) does contain frequency-dependent selection, and thus, their application of Roughgarden's criterion for evolutionary stability to a model for which it is not applicable leads to the erroneous conclusion that the ecological and evolutionary processes are in conflict. The utility of the game theoretic approach is illustrated by two examples. The first considers an ESS composed of a single strategy, the second an ESS composed of a coalition of two strategies. Evolution occurs on a frequency-dependent adaptive landscape. For this reason, the approach is appropriate for modeling competitive speciation (Rosenzweig, 1978). Also, the game theoretic approach is designed to combine the interplay between the background environment (including the biotic components) and the evolutionary potential of the populations or organisms. The actual application of this theory will require knowledge of both.  相似文献   

20.
In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号