首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S. LUYSSAERT  I. INGLIMA  M. JUNG  A. D. RICHARDSON  M. REICHSTEIN  D. PAPALE  S. L. PIAO  E. ‐D. SCHULZE  L. WINGATE  G. MATTEUCCI  L. ARAGAO  M. AUBINET  C. BEER  C. BERNHOFER  K. G. BLACK  D. BONAL  J. ‐M. BONNEFOND  J. CHAMBERS  P. CIAIS  B. COOK  K. J. DAVIS  A. J. DOLMAN  B. GIELEN  M. GOULDEN  J. GRACE  A. GRANIER  A. GRELLE  T. GRIFFIS  T. GRÜNWALD  G. GUIDOLOTTI  P. J. HANSON  R. HARDING  D. Y. HOLLINGER  L. R. HUTYRA  P. KOLARI  B. KRUIJT  W. KUTSCH  F. LAGERGREN  T. LAURILA  B. E. LAW  G. LE MAIRE  A. LINDROTH  D. LOUSTAU  Y. MALHI  J. MATEUS  M. MIGLIAVACCA  L. MISSON  L. MONTAGNANI  J. MONCRIEFF  E. MOORS  J. W. MUNGER  E. NIKINMAA  S. V. OLLINGER  G. PITA  C. REBMANN  O. ROUPSARD  N. SAIGUSA  M. J. SANZ  G. SEUFERT  C. SIERRA  M. ‐L. SMITH  J. TANG  R. VALENTINI  T. VESALA  I. A. JANSSENS 《Global Change Biology》2007,13(12):2509-2537
Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome‐specific carbon budgets; to re‐examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome‐specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non‐CO2 carbon fluxes are not presently being adequately accounted for.  相似文献   

2.
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses.  相似文献   

3.
4.
Aim Extrapolation of tower CO2 fluxes will be greatly facilitated if robust relationships between flux components and remotely sensed factors are established. Long‐term measurements at five Northern Great Plains locations were used to obtain relationships between CO2 fluxes and photosynthetically active radiation (Q), other on‐site factors, and Normalized Difference Vegetation Index (NDVI) from the SPOT VEGETATION data set. Location CO2 flux data from the following stations and years were analysed: Lethbridge, Alberta 1998–2001; Fort Peck, MT 2000, 2002; Miles City, MT 2000–01; Mandan, ND 1999–2001; and Cheyenne, WY 1997–98. Results Analyses based on light‐response functions allowed partitioning net CO2 flux (F) into gross primary productivity (Pg) and ecosystem respiration (Re). Weekly averages of daytime respiration, γday, estimated from light responses were closely correlated with weekly averages of measured night‐time respiration, γnight (R2 0.64 to 0.95). Daytime respiration tended to be higher than night‐time respiration, and regressions of γday on γnight for all sites were different from 1 : 1 relationships. Over 13 site‐years, gross primary production varied from 459 to 2491 g CO2 m?2 year?1, ecosystem respiration from 996 to 1881 g CO2 m?2 year?1, and net ecosystem exchange from ?537 (source) to +610 g CO2 m?2 year?1 (sink). Maximum daily ecological light‐use efficiencies, ?d,max = Pg/Q, were in the range 0.014 to 0.032 mol CO2 (mol incident quanta)?1. Main conclusions Ten‐day average Pg was significantly more highly correlated with NDVI than 10‐day average daytime flux, Pd (R2 = 0.46 to 0.77 for Pg‐NDVI and 0.05 to 0.58 for Pd‐NDVI relationships). Ten‐day average Re was also positively correlated with NDVI, with R2 values from 0.57 to 0.77. Patterns of the relationships of Pg and Re with NDVI and other factors indicate possibilities for establishing multivariate functions allowing scaling‐up local fluxes to larger areas using GIS data, temporal NDVI, and other factors.  相似文献   

5.
6.
Scaling up evolutionary responses to elevated CO2: lessons from Arabidopsis   总被引:6,自引:0,他引:6  
Results from norm of reaction studies and selection experiments indicate that elevated CO2 will act as a selective agent on natural plant populations, especially for C3 species that are most sensitive to changes in atmospheric CO2 concentration. Evolutionary responses to CO2 may alter plant physiology, development rate, growth, and reproduction in ways that cannot be predicted from single generation studies. Moreover, ecological and evolutionary changes in plant communities will have a range of consequences at higher spatial scales and may cause substantial deviations from ecosystem level predictions based on short‐term responses to elevated CO2. Therefore, steps need to be taken to identify the plant traits that are most likely to evolve at elevated CO2, and to understand how these changes may affect net primary productivity within ecosystems. These processes may range in scale from molecular and physiological changes that occur among genotypes at the individual and population levels, to changes in community‐ and ecosystem‐level productivity that result from the integrative effects of different plant species evolving simultaneously. In this review, we (1) synthesize recent studies investigating the role of atmospheric CO2 as a selective agent on plants, (2) discuss possible control points during plant development that may change in response to selection at elevated CO2 with an emphasis at the primary molecular level, and (3) provide a quantitative framework for scaling the evolutionary effects of CO2 on plants in order to determine changes in community and ecosystem productivity. Furthermore, this review points out that studies integrating the effects of plant evolution in response to elevated CO2 are lacking, and therefore more attention needs be devoted to this issue among the global change research community.  相似文献   

7.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

8.
We measured soil CO2 flux over 19 sampling periods that spanned two growing seasons in a grassland Free Air Carbon dioxide Enrichment (FACE) experiment that factorially manipulated three major anthropogenic global changes: atmospheric carbon dioxide (CO2) concentration, nitrogen (N) supply, and plant species richness. On average, over two growing seasons, elevated atmospheric CO2 and N fertilization increased soil CO2 flux by 0.57 µmol m?2 s?1 (13% increase) and 0.37 µmol m?2 s?1 (8% increase) above average control soil CO2 flux, respectively. Decreases in planted diversity from 16 to 9, 4 and 1 species decreased soil CO2 flux by 0.23, 0.41 and 1.09 µmol m?2 s?1 (5%, 8% and 21% decreases), respectively. There were no statistically significant pairwise interactions among the three treatments. During 19 sampling periods that spanned two growing seasons, elevated atmospheric CO2 increased soil CO2 flux most when soil moisture was low and soils were warm. Effects on soil CO2 flux due to fertilization with N and decreases in diversity were greatest at the times of the year when soils were warm, although there were no significant correlations between these effects and soil moisture. Of the treatments, only the N and diversity treatments were correlated over time; neither were correlated with the CO2 effect. Models of soil CO2 flux will need to incorporate ecosystem CO2 and N availability, as well as ecosystem plant diversity, and incorporate different environmental factors when determining the magnitude of the CO2, N and diversity effects on soil CO2 flux.  相似文献   

9.
10.
11.
12.
Respiration (carbon efflux) by terrestrial ecosystems is a major component of the global carbon (C) cycle, but the response of C efflux to atmospheric CO2 enrichment remains uncertain. Respiration may respond directly to an increase in the availability of C substrates at high CO2, but also may be affected indirectly by a CO2‐mediated alteration in the amount by which respiration changes per unit of change in temperature or C uptake (sensitivity of respiration to temperature or C uptake). We measured CO2 fluxes continuously during the final 2 years of a 4‐year experiment on C3/C4 grassland that was exposed to a 200–560 μmol mol?1 CO2 gradient. Flux measurements were used to determine whether CO2 treatment affected nighttime respiration rates and the response of ecosystem respiration to seasonal changes in net C uptake and air temperature. Increasing CO2 from subambient to elevated concentrations stimulated grassland respiration at night by increasing the net amount of C fixed during daylight and by increasing either the sensitivity of C efflux to daily changes in C fixation or the respiration rate in the absence of C uptake (basal ecosystem respiration rate). These latter two changes contributed to a 30–47% increase in the ratio of nighttime respiration to daytime net C influx as CO2 increased from subamient to elevated concentrations. Daily changes in net C uptake were highly correlated with variation in temperature, meaning that the shared contribution of C uptake and temperature in explaining variance in respiration rates was large. Statistically controlling for collinearity between temperature and C uptake reduced the effect of a given change in C influx on respiration. Conversely, CO2 treatment did not affect the response of grassland respiration to seasonal variation in temperature. Elevating CO2 concentration increased grassland respiration rates by increasing both net C input and respiration per unit of C input. A better understanding of how C efflux varies with substrate supply thus may be required to accurately assess the C balance of terrestrial ecosystems.  相似文献   

13.
Elevated atmospheric carbon dioxide concentrations ([CO2]) generally increase plant photosynthesis in C3 species, but not in C4 species, and reduce stomatal conductance in both C3 and C4 plants. In addition, tissue nitrogen concentration ([N]) often fails to keep pace with enhanced carbon gain under elevated CO2, particularly in C3 species. While these responses are well documented in many species, implications for plant growth and nutrient cycling in native ecosystems are not clear. Here we present data on 18 years of measurement of above and belowground biomass, tissue [N] and total standing crop of N for a Scirpus olneyi‐dominated (C3 sedge) community, a Spartina patens‐dominated (C4 grass) community and a C3–C4‐mixed species community exposed to ambient and elevated (ambient +340 ppm) atmospheric [CO2] in natural salinity and sea level conditions of a Chesapeake Bay wetland. Increased biomass production (shoots plus roots) under elevated [CO2] in the S. olneyi‐dominated community was sustained throughout the study, averaging approximately 35%, while no significant effect of elevated [CO2] was found for total biomass in the C4‐dominated community. We found a significant decline in C4 biomass (correlated with rising sea level) and a concomitant increase in C3 biomass in the mixed community. This shift from C4 to C3 was accelerated by the elevated [CO2] treatment. The elevated [CO2] stimulation of total biomass accumulation was greatest during rainy, low salinity years: the average increase above the ambient treatment during the three wettest years (1994, 1996, 2003) was 2.9 t ha−1 but in the three driest years (1995, 1999, 2002), it was 1.2 t ha−1. Elevated [CO2] depressed tissue [N] in both species, but especially in the S. olneyi where the relative depression was positively correlated with salinity and negatively related with the relative enhancement of total biomass production. Thus, the greatest amount of carbon was added to the S. olneyi‐dominated community during years when shoot [N] was reduced the most, suggesting that the availability of N was not the most or even the main limitation to elevated [CO2] stimulation of carbon accumulation in this ecosystem.  相似文献   

14.
15.
Growth at elevated CO2: photosynthetic responses mediated through Rubisco   总被引:17,自引:12,他引:5  
Abstract. The global uptake of CO2 in photosynthesis is about 120 gigatons (Gt) of carbon per year. Virtually all passes through one enzyme, ribulose bisphosphate carboxylase/oxygenase (rubisco), which initiates both the photosynthetic carbon reduction, and photorespiratory carbon oxidation, cycles. Both CO2 and O2 are substrates; CO2 also activates the enzyme. In C3 plants, rubisco has a low catalytic activity, operates below its Km (CO2), and is inhibited by O2. Consequently, increases in the CO2/O2 ratio stimulate C3 photosynthesis and inhibit photorespiration. CO2 enrichment usually enhances the productivity of C3 plants, but the effect is marginal in C4 species. It also causes acclimation in various ways: anatomically, morphologically, physiologically or biochemically. So, CO2 exerts secondary effects in growth regulation, probably at the molecular level, that are not predictable from its primary biochemical role in carboxylation. After an initial increase with CO2 enrichment, net photosynthesis often declines. This is a common acclimation phenomenon, less so in field studies, that is ultimately mediated by a decline in rubisco activity, though the RuBP/Pi-regeneration capacities of the plant may play a role. The decline is due to decreased rubisco protein, activation state, and/or specific activity, and it maintains the rubisco fixation and RuBP/Pi regeneration capacities in balance. Carbohydrate accumulation is sometimes associated with reduced net photosynthesis, possibly causing feedback inhibition of the RuBP/Piregeneration capacities, or chloroplast disruption. As exemplified by field-grown soybeans and salt marsh species, a reduction in net photosynthesis and rubisco activity is not inevitable under CO2 enrichment. Strong sinks or rapid translocation may avoid such acclimation responses. Over geological time, aquatic autotrophs and terrestrial C4 and CAM plants have genetically adapted to a decline in the external CO2/O2 ratio, by the development of mechanisms to concentrate CO2 internally; thus circumventing O2 inhibition of rubisco. Here rubisco affinity for CO2 is less, but its catalytic activity is greater, a situation compatible with a high-CO2 internal environment. In aquatic autotrophs, the CO2 concentrating mechanisms acclimate to the external CO2, being suppressed at high-CO2. It is unclear, whether a doubling in atmospheric CO2 will be sufficient to cause a de-adaptive trend in the rubisco kinetics of future C3 plants, producing higher catalytic activities.  相似文献   

16.
In situ manipulations were conducted in a naturally drained lake on the arctic coastal plain near Prudhoe Bay, Alaska (70 °21.98′ N, 148 °33.72′ W) to assess the potential short-term effects of decreased water table and elevated temperature on net ecosystem CO2 flux. The experiments were conducted over a 2-year period, and during that time, water table depth of drained plots was maintained on average 7 cm lower than the ambient water table, and surface temperatures of plots exposed to elevated temperature were increased on average 0.5 °C. Water table drainage, and to a lesser extent elevated temperature, resulted in significant increases in ecosystem respiration (ER) rates, and only small and variable changes in gross ecosystem productivity (GEP). As a result, drained plots were net sources of ≈ 40 gC m–2 season–1 over both years of manipulation, while control plots were net sinks of atmospheric CO2 of about 10 gC m–2 season–1 (growing season length was an estimated 125 days). Control plots exposed to elevated temperatures accumulated slightly more carbon than control plots exposed to ambient temperatures. The direct effects of elevated temperature on net CO2 flux, ER, and GEP were small, however, elevated temperature appeared to interact with drainage to exacerbate the amount of net carbon loss. These data suggest that many currently saturated or nearly saturated wet sedge ecosystems of the north slope of Alaska may become significant sources of CO2 to the atmosphere if climate change predictions of increased evapotranspiration and reduced soil water status are realized. There is ample evidence that this may be already occurring in arctic Alaska, as a change in net carbon balance has been observed for both tussock and wet-sedge tundra ecosystems over the last 2–3 decades, which coincides with a recent increase in surface temperature and an associated decrease in soil water content. In contrast, if precipitation increases relatively more than evapotranspiration, then increases in soil moisture content will likely result in greater carbon accumulation.  相似文献   

17.
CO2 flux measurements give access to two critical terms of the carbon budget of terrestrial ecosystems, the gross primary productivity (GPP) and the net ecosystem productivity (NEP). CO2 fluxes measured by micrometeorological methods have spatial and temporal characteristics that make them potentially useful in modelling the global terrestrial carbon budget. The first use is in parameterizing ecosystem physiological processes. We present an example, based on parameterizing the mean light response of GPP. This parameterization can be used in diagnostic, satellite-based GPP models. A global application leads to realistic estimates of global GPP. The second use is in testing the seasonality of fluxes predicted by global models. Our example of this use tests two global GPP models. One is a diagnostic, satellite-based model, and one is a prognostic, process-based model. Despite the limitations of the models, both agree reasonably well with the measurements. The agreements and disagreements are useful in addressing the problems of available input datasets and representation of processes, in global models. Long-term CO2 flux measurements give access to key variables of terrestrial vegetation models and therefore offer exciting perspectives.  相似文献   

18.
In this study, we investigated the impact of elevated atmospheric CO2 (ambient + 350 μmol mol–1) on fine root production and respiration in Scots pine (Pinus sylvestris L.) seedlings. After six months exposure to elevated CO2, root production measured by root in-growth bags, showed significant increases in mean total root length and biomass, which were more than 100% greater compared to the ambient treatment. This increased root length may have lead to a more intensive soil exploration. Chemical analysis of the roots showed that the roots in the elevated treatment accumulated more starch and had a lower C/N-ratio. Specific root respiration rates were significantly higher in the elevated treatment and this was probably attributed to increased nitrogen concentrations in the roots. Rhizospheric respiration and soil CO2 efflux were also enhanced in the elevated treatment. These results clearly indicate that under elevated atmospheric CO2 root production and development in Scots pine seedlings is altered and respiratory carbon losses through the root system are increased.  相似文献   

19.
The fractional absorption of photosynthetically active radiation (fPAR) is frequently a key variable in models describing terrestrial ecosystem–atmosphere interactions, carbon uptake, growth and biogeochemistry. We present a novel approach to the estimation of the fraction of incident photosynthetically active radiation absorbed by the photosynthetic components of a plant canopy (fChl). The method uses micrometeorological measurements of CO2 flux and incident radiation to estimate light response parameters from which canopy structure is deduced. Data from two Ameriflux sites in Oklahoma, a tallgrass prairie site and a wheat site, are used to derive 7‐day moving average estimates of fChl during three years (1997–1999). The inverse estimates are compared to long‐term field measurements of PAR absorption. Good correlations are obtained when the field‐measured fPAR is scaled by an estimate of the green fraction of total leaf area, although the inverse technique tends to be lower in value than the field measurements. The inverse estimates of fChl using CO2 flux measurements are different from measurements of fPAR that might be made by other, more direct, techniques. However, because the inverse estimates are based on observed canopy CO2 uptake, they might be considered more biologically relevant than direct measurements that are affected by non‐physiologically active components of the canopy. With the increasing number of eddy covariance sites around the world the technique provides the opportunity to examine seasonal and inter‐annual variation in canopy structure and light harvesting capacity at individual sites. Furthermore, the inverse fChl provide a new source of data for development and testing of fPAR retrieval using remote sensing. New remote sensing algorithms, or adjustments to existing algorithms, might thus become better conditioned to ‘biologically significant’ light absorption than currently possible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号