首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymic reaction mechanism of a manganese-containing superoxide dismutase from Bacillus stearothermophilus was studied by using pulse radiolysis. During catalysis (pH 8.9; 25 degrees C), changes occurring in the kinetics of substrate disappearance and in the visible absorption of the enzyme at 480 nm established that the simple two-step mechanism found for copper- and iron-containing superoxide dismutases is not involved. At a low ratio (less than 15) of substrate concentration to enzyme concentration the decay of O2--is close to exponetial, whereas at much higher ratios (greater than 100) the observed decay is predominantly zero-order. The simplest interpretation of the results invokes a rapid one-electron oxidation-reduction cycle ('the fast cycle') and, concurrently, a slower reaction giving a form of the enzyme that is essentially unreactive towards O2-- but which undergoes a first-order decay to yield fully active native enzyme ('the slow cycle'). The fast cycle involves the native enzyme EA and a form of the enzyme EB which can be obtained also by treating the form EA with H2O2. Computer calculations made with such a simple model predict behaviour in excellent agreement with the observed results.  相似文献   

2.
The interaction of benzeneboronic acid(BBA), a possible transition state analog, with subtilisin BPN' [EC 3.4.21.14] was studied by the temperature-jump method at various pH's, temperatures and in D2O as well as H2O. From analysis of the concentration dependence of the relaxation times, it was suggested that the subtillsin-BBA interactions consist of at least two elementary steps, a fast bimolecular association followed by a slow unimolecular process. Similar concentration dependence was observed at pH 6.1-6.7 at 25degrees. However, in D2O the reciprocal relaxation times generally decreased compared to those in H2O and became concentration-independent below pD 6.5. The relaxation times were influenced considerably by the temperature. From these results, the slow unimolecular process was assigned to the trigonal-tetrahedral interconversion of BBA at the active site of the enzyme.  相似文献   

3.
myo-Inositol oxygenase (MIOX) catalyzes the ring-cleaving, four-electron oxidation of its cyclohexan-(1,2,3,4,5,6-hexa)-ol substrate (myo-inositol, MI) to d-glucuronate (DG). The preceding paper [Xing, G., Hoffart, L. M., Diao, Y., Prabhu, K. S., Arner, R. J., Reddy, C. C., Krebs, C., and Bollinger, J. M., Jr. (2006) Biochemistry 45, 5393-5401] demonstrates by M?ssbauer and electron paramagnetic resonance (EPR) spectroscopies that MIOX can contain a non-heme dinuclear iron cluster, which, in its mixed-valent (II/III) and fully oxidized (III/III) states, is perturbed by binding of MI in a manner consistent with direct coordination. In the study presented here, the redox form of the enzyme that activates O(2) has been identified. l-Cysteine, which was previously reported to accelerate turnover, reduces the fully oxidized enzyme to the mixed-valent form, and O(2), the cosubstrate, oxidizes the fully reduced form to the mixed-valent form with a stoichiometry of one per O(2). Both observations implicate the mixed-valent, diiron(II/III) form of the enzyme as the active state. Stopped-flow absorption and freeze-quench EPR data from the reaction of the substrate complex of mixed-valent MIOX [MIOX(II/III).MI] with limiting O(2) in the presence of excess, saturating MI reveal the following cycle: (1) MIOX(II/III).MI reacts rapidly with O(2) to generate an intermediate (H) with a rhombic, g < 2 EPR spectrum; (2) a form of the enzyme with the same absorption features as MIOX(II/III) develops as H decays, suggesting that turnover has occurred; and (3) the starting MIOX(II/III).MI complex is then quantitatively regenerated. This cycle is fast enough to account for the catalytic rate. The DG/O(2) stoichiometry in the reaction, 0.8 +/- 0.1, is similar to the theoretical value of 1, whereas significantly less product is formed in the corresponding reaction of the fully reduced enzyme with limiting O(2). The DG/O(2) yield in the latter reaction decreases as the enzyme concentration is increased, consistent with the hypothesis that initial conversion of the reduced enzyme to the MIOX(II/III).MI complex and subsequent turnover by the mixed-valent form is responsible for the product in this case. The use of the mixed-valent, diiron(II/III) cluster by MIOX represents a significant departure from the mechanisms of other known diiron oxygenases, which all involve activation of O(2) from the II/II manifold.  相似文献   

4.
Copper, zinc-superoxide dismutase (CuZn-SOD) is a cytosolic, antioxidant enzyme that scavenges potentially damaging superoxide radical (()O(2)(-)). Under the proper conditions, CuZn-SOD also catalyzes the oxidation and reduction of certain small molecules. Here, we demonstrate that increased exposure to hydrogen peroxide (H(2)O(2)), a by-product of the ()O(2)(-) scavenging reaction, dramatically increases the ability of CuZn-SOD to oxidize melatonin and reduce S-nitrosoglutathione (GSNO). After a 15min in vitro incubation with CuZn-SOD and 1mM H(2)O(2), 76% of the melatonin was oxidized, compared to 52% with 0.25mM H(2)O(2), and just 9% without H(2)O(2). Pre-incubation with 1mM H(2)O(2) resulted in a 100% increase in the rate of GSNO breakdown by CuZn-SOD in the presence of glutathione (GSH) compared to untreated CuZn-SOD. Collectively, these data suggest that even small increases in intracellular H(2)O(2) levels may result in the oxidation and/or reduction of small molecules critical for proper cellular function.  相似文献   

5.
The autoxidation of 3-hydroxyanthranilate to cinnabarinate at 37 degrees C and at pH 7.4 is hastened by superoxide dismutase (SOD). The Cu,Zn-containing enzyme from bovine erythrocytes and the Mn-containing enzyme from Escherichia coli were equally effective in this regard; whereas the H2O2-inactivated Cu,Zn enzyme was ineffective. Catalase appears to augment the effect of superoxide dismutase, because it prevents the bleaching of cinnabarinate by H2O2. It follows that O2-, which is a product of the autoxidation, slows the net autoxidation by engaging in back reactions and that SOD increases the rate of autoxidation by removal of O2- and thus by prevention of these back reactions.  相似文献   

6.
Spectral scans in both the visible (650-450 nm) and the Soret (450-380 nm) regions were recorded for the native enzyme, Compound II, and Compound III of lactoperoxidase and thyroid peroxidase. Compound II for each enzyme (1.7 microM) was prepared by adding a slight excess of H2O2 (6 microM), whereas Compound III was prepared by adding a large excess of H2O2 (200 microM). After these compounds had been formed it was observed that they were slowly reconverted to the native enzyme in the absence of exogenous donors. The pathway of Compound III back to the native enzyme involved Compound II as an intermediate. Reconversion of Compound III to native enzyme was accompanied by the disappearance of H2O2 and generation of O2, with approximately 1 mol of O2 formed for each 2 mol of H2O2 that disappeared. A scheme is proposed to explain these observations, involving intermediate formation of the ferrous enzyme. According to the scheme, Compound III participates in a reaction cycle that effectively converts H2O2 to O2. Iodide markedly affected the interconversions between native enzyme, Compound II, and Compound III for lactoperoxidase and thyroid peroxidase. A low concentration of iodide (4 microM) completely blocked the formation of Compound II when lactoperoxidase or thyroid peroxidase was treated with 6 microM H2O2. When the enzymes were treated with 200 microM H2O2, the same low concentration of iodide completely blocked the formation of Compound III and largely prevented the enzyme degradation that otherwise occurred in the absence of iodide. These effects of iodide are readily explained by (i) the two-electron oxidation of iodide to hypoiodite by Compound I, which bypasses Compound II as an intermediate, and (ii) the rapid oxidation of H2O2 to O2 by the hypoiodite formed in the reaction between Compound I and iodide.  相似文献   

7.
L D Faller  G A Elgavish 《Biochemistry》1984,23(26):6584-6590
The gastric H,K-ATPase is shown to catalyze 18O exchange between Pi and HOH. Mg2+ is the only ion required for the reaction. K+ increases the rate of isotope exchange, which is directly proportional to specific ATPase activity. Ouabain, which potently inhibits the Na,K-ATPase, has no effect on the exchange reaction. Conversely, omeprazole, which is specific for the H,K-ATPase, completely inhibits 18O exchange. Vanadate inhibition of exchange can be explained by competitive binding with Pi. The rate of 18O exchange is faster than the hydrolytic rate and about equal to the dephosphorylation rate. Thus, the ionic requirements for exchange, inhibition of exchange, and the rate of exchange are all compatible with catalysis occurring via the same phosphoenzyme intermediate formed during hydrolysis of ATP. The distribution of 18O-labeled Pi species formed with time indicates that Pi loss is only about twice as fast as covalent bond formation. This kinetic pattern is unaffected by K+, temperature, or the specific activity of the enzyme preparation. Invariance of the kinetic pattern could mean isotope exchange is always catalyzed by the same form of the enzyme, and K+ and higher temperature accelerate the reaction by increasing the relative amount of the active conformer. Independence of the kinetic pattern from specific activity implies that the catalytic mechanism of active enzyme molecules is unaffected by inactive proteins in gastric microsomal membranes.  相似文献   

8.
The regulation of the antioxidant defence system by ultraviolet-B (UV-B) was determined in a marine macroalga Ulva fasciata Delile exposed to low (0.5, 1 W m(-2)), medium (2.5, 5 W m(-2)), and high (10, 20 W m(-2)) UV-B irradiance. UV-B > or =2.5 W m(-2) increased H2O2 contents that are positively correlated with lipid peroxidation and total peroxide contents. Inhibition of the UV-B-induced H2O2 increase by a specific O2.- scavenger, 1,2-dihydroxy-benzene-3,5-disulphonic acid, shows that O2.- is the primary source of H2O2. Superoxide dismutase activity was increased by UV-B with a peak at 2.5 W m(-2), which did not match the H2O2 pattern. Alleviation of UV-B-induced oxidative damage by a H2O2 scavenger, dimethylthiourea, and a free radical scavenger, sodium benzoate, which inhibited UV-B-induced H2O2 accumulation, suggests that oxidative damage caused by UV-B > or = 2.5 W m(-2) is ascribed to accumulated H2O2. However, a decrease in growth rate and TTC reduction ability only at high UV-B doses indicates that the defence and repairing systems operate at low and medium UV-B doses. H2O2 not only can be excreted but can also be detoxified via the ascorbate-glutathione cycle. Increases in catalase, peroxidase, ascorbate peroxidase, and glutathione reductase activities and ascorbate (AsA) and glutathione pools, as well as AsA regeneration ability, function to keep the balance of cellular H2O2 under low UV-B doses. Dehydroascorbate reductase and monodehydroascorbate reductase are responsible for AsA regeneration under low and medium UV-B radiation, respectively. The appearance of oxidative damage in medium and high UV-B flux is attributable to a lower induction of the ascorbate-glutathione cycle as an antioxidant defence system. Overall, the availability of antioxidants and the induction of antioxidant enzyme activities for detoxifying reactive oxygen species (ROS) are regulated in U. fasciata against UV-B-induced oxidative stress, and experiments using ROS scavengers demonstrate that the antioxidant defence system is modulated by O2.- or H2O2.  相似文献   

9.
夜间低温胁迫对番茄叶片活性氧代谢及AsA-GSH循环的影响   总被引:3,自引:0,他引:3  
以番茄品种‘辽园多丽’为试材,利用人工气候室模拟设施生产中的夜间低温胁迫环境,研究9℃和6℃夜低温对番茄叶片活性氧代谢和AsA-GSH循环的影响。结果显示:9℃和6℃夜间低温胁迫3~9d可诱导番茄叶片中超氧阴离子(O2.-)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量上升;抑制过氧化物酶(POD)、过氧化氢酶(CAT)的活性,增加超氧化物歧化酶(SOD)和AsA-GSH循环中抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)的活性,并提高还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)的含量。研究表明,在夜间低温胁迫过程中,增加的番茄叶片中SOD活性和AsA-GSH循环清除活性氧的能力并未与氧还原的速率一致,从而导致番茄叶片中活性氧的累积,使细胞膜系统受到一定破坏,在6℃处理的植物中尤为明显。  相似文献   

10.
A biosensor to detect hydrogen peroxide, by coulometry, down to submicromolar concentration using a monomolecular layer of horseradish peroxidase was developed. In this device 0.3 pmol of the enzyme were covalently immobilized on the glass surface of the biosensor and the enzyme layer was characterized by atomic force microscopy and activity measurements. The glass surface bearing the peroxidase was faced to a carbon electrode in a cell of 1 microl of active volume. The polarization of the working electrode at -100 mV versus Ag/AgCl, in the presence of 1,4-hydroquinone as mediator, allowed the fast reduction of the injected hydrogen peroxide via the hydroquinone-peroxidase system. This device permitted to measure the total number of H(2)O(2) molecules present in the cell in the concentration range of 0.3-100 microM H(2)O(2), with a sensitivity of 196 nC/microM H(2)O(2), which is close to the theoretical value (193 nC/microM).  相似文献   

11.
A homogeneous Mn-dependent peroxidase (MnP) was purified from the extracellular culture fluid of the lignin-degrading white rot fungus Phlebia radiata by anion exchange chromatography. The enzyme had a molecular weight of 49,000 and pI 3.8. It was a glycoprotein, containing carbohydrate moieties accounting for 10% of the molecular weight. Mn-peroxidase was capable of oxidizing phenolic compounds in the presence of H2O2, whereas the effect on nonphenolic lignin model compounds was insignificant. MnP contained protoporphyrin IX as a prosthetic group. During enzymatic reactions H2O2 converted the native MnP to compound II. Mn2+ was essential in completing the catalytic cycle by returning the enzyme to its native state. The oxidation of ultimate substrates was dependent on superoxide radicals, O2- and probably on Mn3+ generated during the catalytic cycle. MnP exhibited high activity of NADH oxidation without exogenously added H2O2. It was shown to produce H2O2 at the expense of NADH.  相似文献   

12.
The oxidation of carcinogenic hydroxamic acids, N-hydroxy-N-2-fluorenylacetamide (N-OH-2-FAA) and N-hydroxy-N-3-fluorenylacetamide (N-OH-3-FAA) catalyzed by horseradish peroxidase (HRP) or cytochrome c in the presence of H2O2 was investigated. HRP/H2O2 was a more efficient system in oxidation of both hydroxamic acids and the standard substrate, guaiacol, then cytochrome c/H2O2. Peroxidative activity of cytochrome c was shown after incubation with Triton X-100 and H2O2 for 20 min at room temperature in 0.05 M phosphate buffer (pH 7.5) or in 0.1 M sodium acetate (pH 6.0) without Triton X-100. Both hydroxamic acids were oxidized to nitroxyl free radicals as shown by electron spin resonance (ESR) spectroscopy. These radicals dismutated to equimolar amounts of 2- or 3-nitrosofluorene and acetate esters of the corresponding hydroxamic acids as shown by thin layer chromatography and spectrophotometric analysis of the products. In addition, large amounts of the N-fluorenylamides were generated in the reactions with cytochrome c/H2O2 system. Of the products, only 2- or 3-nitrosofluorene per se or when generated from the oxidation of the hydroxamic acids, interacted with lecithin (1 mg/ml) to yield ESR signals of the immobilized nitroxyl free radicals. In contrast to HRP/H2O2 system, in which the initial velocity of the radical formation was too fast to measure and the maximal concentrations of the nitroxyl free radicals of both hydroxamic acids were similar, in the cytochrome c/H2O2 system the nitroxyl free radical of N-OH-2-FAA formed at a 6-fold faster rate and accumulated at a 2-fold higher concentration than the radical of N-OH-3-FAA. In both enzyme systems, the persistence of the signal and the length of time before it had decreased to one half its maximum were several-fold longer for the nitroxyl free radical of N-OH-3-FAA than for that of N-OH-2-FAA. These data showed that these nitroxyl free radicals differed in their kinetic properties. One electron oxidation of N-OH-3-FAA by HRP/H2O2 system and of both isomeric hydroxamic acids by cytochrome c/H2O2 system are reported for the first time in this work and may be considered an activation reaction in carcinogenesis by these compounds.  相似文献   

13.
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase.  相似文献   

14.
The reaction of H2O2 with reduced cytochrome c oxidase was investigated with rapid-scan/stopped-flow techniques. The results show that the oxidation rate of cytochrome a3 was dependent upon the peroxide concentration (k = 2 X 10(4) M-1 X s-1). Cytochrome a and CuA were oxidised with a maximal rate of approx. 20 s-1, indicating that the rate of internal electron transfer was much slower with H2O2 as the electron acceptor than with O2 (k greater than or equal to 700 s-1). Although other explanations are possible, this result strongly suggests that in the catalytic cycle with oxygen as a substrate the internal electron-transfer rate is enhanced by the formation of a peroxo-intermediate at the cytochrome a3-CuB site. It is shown that H2O2 took up two electrons per molecule. The reaction of H2O2 with oxidised cytochrome c oxidase was also studied. It is shown that pulsed oxidase readily reacted with H2O2 (k approximately 700 M-1 X s-1). Peroxide binding is followed by an H2O2-independent conformational change (k = 0.9 s-1). Resting oxidase partially bound H2O2 with a rate similar to that of pulsed oxidase; after H2O2 binding the resting enzyme was converted into the pulsed conformation in a peroxide-independent step (k = 0.2 s-1). Within 5 min, 55% of the resting enzyme reacted in a slower process. We conclude from the results that oxygenated cytochrome c oxidase probably is an enzyme-peroxide complex.  相似文献   

15.
Lignin peroxidase compound III. Mechanism of formation and decomposition   总被引:9,自引:0,他引:9  
Lignin peroxidase compound III (LiPIII) was prepared via three procedures: (a) ferrous LiP + O2 (LiPIIIa), (b) ferric LiP + O2-. (LiPIIIb), and (c) LiP compound II + excess H2O2 followed by treatment with catalase (LiPIIIc). LiPIIIa, b, and c each have a Soret maximum at approximately 414 nm and visible bands at 543 and 578 nm. LiPIIIa, b, and c each slowly reverted to native ferric LiP, releasing stoichiometric amounts of O2-. in the process. Electronic absorption spectra of LiPIII reversion to the native enzyme displayed isosbestic points in the visible region at 470, 525, and 597 nm, suggesting a single-step reversion with no intermediates. The LiPIII reversion reactions obeyed first-order kinetics with rate constants of approximately 1.0 X 10(-3) s-1. In the presence of excess peroxide, at pH 3.0, native LiP, LiPII, and LiPIIIa, b, and c are all converted to a unique oxidized species (LiPIII*) with a spectrum displaying visible bands at 543 and 578 nm, but with a Soret maximum at 419 nm, red-shifted 5 nm from that of LiPIII. LiPIII* is bleached and inactivated in the presence of excess H2O2 via a biphasic process. The fast first phase of this bleaching reaction obeys second-order kinetics, with a rate constant of 1.7 X 10(1) M-1 s-1. Addition of veratryl alcohol to LiPIII* results in its rapid reversion to the native enzyme, via an apparent one-step reaction that obeys second-order kinetics with a rate constant of 3.5 X 10(1) M-1 s-1. Stoichiometric amounts of O2-. are released during this reaction. When this reaction was run under conditions that prevented further reactions, HPLC analysis of the products demonstrated that veratryl alcohol was not oxidized. These results suggest that the binding of veratryl alcohol to LiPIII* displaces O2-., thus returning the enzyme to its native state. In contrast, the addition of veratryl alcohol to LiPIII did not affect the rate of spontaneous reversion of LiPIII to the native enzyme.  相似文献   

16.
大豆萌发过程的活性氧代谢   总被引:16,自引:0,他引:16  
本文研究了大豆萌发过程中活性氧的产生与清除,并探讨了光因子在活性氧代谢中的作用。大豆呼吸强度、O产生速率及H2O2水平都在吸水后第四天达到高峰,然后下降,三者的变化趋势同步。SOD、POD及APX的活性随萌发过程而逐渐增强,最后趋于平稳。SOD同工酶谱中分别于萌发的第二、第三天各出现一条新的酶带。CAT在萌发的初期猛增50倍左右,之后趋于稳定。在三种清除H2O2的酶(CAT、POD、APX)中,CAT清除H2O2的能力远远高于POD与APX,CAT可能是大豆萌发过程中最主要的H2O2清除酶。光萌发时呼吸强度低于暗中萌发,但O产生速率与H2O2水平高于暗萌发,光萌发时O的产生占总耗氧量的1.1—2.7%,而暗中萌发为0.9—1.3%。光条件下SOD、APX活性明显高于暗中萌发,而POD与CAT则在光和暗条件下相差不大。  相似文献   

17.
Bai X  Yang L  Tian M  Chen J  Shi J  Yang Y  Hu X 《PloS one》2011,6(6):e20714
The viability of recalcitrant seeds is lost following stress from either drying or freezing. Reactive oxygen species (ROS) resulting from uncontrolled metabolic activity are likely responsible for seed sensitivity to drying. Nitric oxide (NO) and the ascorbate-glutathione cycle can be used for the detoxification of ROS, but their roles in the seed response to desiccation remain poorly understood. Here, we report that desiccation induces rapid accumulation of H(2)O(2), which blocks recalcitrant Antiaris toxicaria seed germination; however, pretreatment with NO increases the activity of antioxidant ascorbate-glutathione pathway enzymes and metabolites, diminishes H(2)O(2) production and assuages the inhibitory effects of desiccation on seed germination. Desiccation increases the protein carbonylation levels and reduces protein S-nitrosylation of these antioxidant enzymes; these effects can be reversed with NO treatment. Antioxidant protein S-nitrosylation levels can be further increased by the application of S-nitrosoglutathione reductase inhibitors, which further enhances NO-induced seed germination rates after desiccation and reduces desiccation-induced H(2)O(2) accumulation. These findings suggest that NO reinforces recalcitrant seed desiccation tolerance by regulating antioxidant enzyme activities to stabilize H(2)O(2) accumulation at an appropriate concentration. During this process, protein carbonylation and S-nitrosylation patterns are used as a specific molecular switch to control antioxidant enzyme activities.  相似文献   

18.
The chain reactions HO* + H2O2 --> H2O + O2*- + H+ and O2*- + H+ + H2O2 --> O2 + HO* + H2O, commonly known as the Haber-Weiss cycle, were first mentioned by Haber and Willst?tter in 1931. George showed in 1947 that the second reaction is insignificant in comparison to the fast dismutation of superoxide, and this finding appears to have been accepted by Weiss in 1949. In 1970, the Haber-Weiss reaction was revived by Beauchamp and Fridovich to explain the toxicity of superoxide. During the 1970s various groups determined that the rate constant for this reaction is of the order of 1 M(-1) s(-1) or less, which confirmed George's conclusion. The reaction of superoxide with hydrogen peroxide was dropped from the scheme of oxygen toxicity, and superoxide became the source of hydrogen peroxide, which yields hydroxyl radicals via the Fenton reaction, Fe2+ + H2O2 --> Fe3+ + HO- + HO*. In 1994, Kahn and Kasha resurrected the Haber-Weiss reaction again, but this time the oxygen was believed to be in the singlet (1delta(g)) state. As toxicity arises not from a Fenton-catalysed Haber-Weiss reaction, but from the Fenton reaction, the Haber-Weiss reaction should not be mentioned anymore.  相似文献   

19.
The application of enzyme-based systems in waste treatment is unusual, given that many drawbacks are derived from their use, including low efficiency, high costs and easy deactivation of the enzyme. The goal of this study is the development of a degradation system based on the use of the ligninolytic enzyme manganese peroxidase (MnP) for the degradation of azo dyes. The experimental work also includes the optimization of the process, with the objective of determining the influence of specific physicochemical factors, such as organic acids, H(2)O(2) addition, Mn(2+) concentration, pH, temperature, enzyme activity and dye concentration. A nearly total decolorization was possible at very low reaction times (10 min) and at high dye concentration (up to 1500 mg L(-)(1)). A specific oxidation capacity as high as 10 mg dye degraded per unit of MnP consumed was attained for a decolorization higher than 90%. Among all, the main factor affecting process efficiency was the strategy of H(2)O(2) addition. The continuous addition at a controlled flow permitted the progressive participation of H(2)O(2) in the catalytic cycle through a suitable regeneration of the oxidized form of the enzyme, which enhanced both the extent and the rate of decolorization. It was also found that, in this particular case, the presence of a chelating organic acid (e.g., malonic) was not required for an effective operation. Probably, Mn(3+) was chelated by the dye itself. The simplicity and high efficiency of the process open an interesting possibility of using of MnP for solving other environmental problems.  相似文献   

20.
The reaction of H2O2 with mixed-valence and fully reduced cytochrome c oxidase was investigated by photolysis of fully reduced and mixed-valence carboxy-cytochrome c oxidase in the presence of H2O2 under anaerobic conditions. The results showed that H2O2 reacted rapidly (k = (2.5-3.1) X 10(4) M-1 X s-1) with both enzyme species. With the mixed-valence enzyme, the fully oxidised enzyme was reformed. On the time-scale of our experiments, no spectroscopically detectable intermediate was observed. This demonstrates that mixed-valence cytochrome c oxidase is able to use H2O2 as a two-electron acceptor, suggesting that cytochrome c oxidase may under suitable conditions act as a peroxidase. Upon reaction of H2O2 with the fully reduced enzyme, cytochrome a was oxidised before cytochrome a3. From this observation it was possible to estimate that the rate of electron transfer from cytochrome a to a3 is about 0.5-5 s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号