首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The baculovirus-insect cell expression system is widely used to produce recombinant mammalian glycoproteins, but the glycosylated end products are rarely authentic. This is because insect cells are typically unable to produce glycoprotein glycans containing terminal sialic acid residues. In this study, we examined the influence of two mammalian glycosyltransferases on N-glycoprotein sialylation by the baculovirus-insect cell system. This was accomplished by using a novel baculovirus vector designed to express a mammalian alpha2,6-sialyltransferase early in infection and a new insect cell line stably transformed to constitutively express a mammalian beta1,4-galactosyltransferase. Various biochemical assays showed that a foreign glycoprotein was sialylated by this virus-host combination, but not by a control virus-host combination, which lacked the mammalian glycosyltransferase genes. Thus, this study demonstrates that the baculovirus-insect cell expression system can be metabolically engineered for N-glycoprotein sialylation by the addition of two mammalian glycosyltransferase genes.  相似文献   

2.
Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.  相似文献   

3.
CED-3 is a cysteine protease required for programmed cell death in the nematode, Caenorhabditis elegans, and shares a sequence similarity with mammalian ICE (interleukin-1beta converting enzyme) family proteases. Both CED-3 and ICE family proteases can induce programmed cell death in mammalian cells. Structural and functional similarities between CED-3 and ICE family proteases indicate that the mechanism of cell death is evolutionarily conserved, suggesting the presence of a similar mechanism involving CED-3/ICE-like proteases in Drosophila. Here we determined whether CED-3 or ICE functions to induce programmed cell death in Drosophila. We have generated transformant lines in which ced-3 or Ice is ectopically expressed using the GAL4-UAS system. Expression of CED-3 and ICE can elicit cell death in Drosophila and the cell death was blocked by coexpressing the p35 gene which encodes a viral inhibitor of CED-3/ICE proteases. Results support the idea that the mechanism of programmed cell death controlled by CED-3/ICE is conserved among widely divergent animal species including Drosophila, and the system described provides a tool to dissect cell death mechanism downstream of CED-3/ICE proteases.  相似文献   

4.
Murine chimeras provide an experimental system in which cell lineage analysis of the mammalian central nervous system (CNS) can be accomplished. Utilizing a cell marker system that permits the identification of cells of each genotype in various cell populations present in histologic sections of the CNS at different developmental periods, fate maps of the mammalian CNS can be constructed. Thus, the presence or persistence of clones of cells can be readily visualized in simply organized CNS regions, like the cerebellar cortex. The electrophoretic variants of the glycolytic enzyme, glucosephosphate isomerase (GPI, E.C. 5.3.1.9; GPI-1A, GPI-1B), are the genotype-specific cell markers most commonly used by experimental mammalian embryologists in studies of cell lineage utilizing mammalian chimeras. We have adapted this cell marker system to permit the visualization and unequivocal identification of cells containing the GPI-1B variant throughout the CNS of adult BALBcByJ a3 C57BL6J chimeric mice. Utilizing allozyme-specific anti-GPI-1B antisera in immunocytochemical (PAP) staining techniques, we can score small as well as large cell populations, neurons as well as glia. We have reconstructed and statistically analyzed the location and distribution of chimerism present in the Purkinje cell population of four of these chimeric mice. We found the Purkinje cells in each of these animals existed as small (3–8) cell patches of like genotype that were not randomly arranged. This suggests that clones of cells may persist as contiguous groups of cells throughout mammalian cerebellar development.  相似文献   

5.
Recombinant mammalian glycoproteins produced by the baculovirus-insect cell expression system usually do not have structurally authentic glycans. One reason for this limitation is the virtual absence in insect cells of certain glycosyltransferases, which are required for the biosynthesis of complex, terminally sialylated glycoproteins by mammalian cells. In this study, we genetically transformed insect cells with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. This produced a new insect cell line that can express both genes, serve as hosts for baculovirus infection, and produce foreign glycoproteins with terminally sialylated N-glycans.  相似文献   

6.
Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation   总被引:19,自引:0,他引:19  
  相似文献   

7.
The first evidence for gene disruption by double-stranded RNA (dsRNA) came from careful analysis in Caenorhabditis elegans. This phenomenon, called RNA interference (RNAi), was observed subsequently in various organisms, including plants, nematodes, Drosophila, and protozoans. Very recently, it has been reported that in mammalian cells, 21- or 22-nucleotide (nt) RNAs with 2-nt 3' overhangs (small inhibitory RNAs, siRNAs) exhibit an RNAi effect. This is because siRNAs are not recognized by the well-characterized host defense system against viral infections, involving dsRNA-dependent inhibition of protein synthesis. However, the current method for introducing synthetic siRNA into cells by lipofection restricts the range of applications of RNAi as a result of the low transfection efficiencies in some cell types and/or short-term persistence of silencing effects. Here, we report a vector-based siRNA expression system that can induce RNAi in mammalian cells. This technical advance for silencing gene expression not only facilitates a wide range of functional analysis of mammalian genes but might also allow therapeutic applications by means of vector-mediated RNAi.  相似文献   

8.
The Ras Recruitment System (RRS) is a method for identification and isolation of protein-protein interaction. The method is based on translocation of cytoplasmic mammalian Ras protein to the inner leaflet of the plasma membrane through protein-protein interaction. The system is studied in a temperature-sensitive yeast strain where the yeast Ras guanyl nucleotide exchange factor is inactive at 36 degrees C. Protein-protein interaction results in cell growth at the restrictive temperature. We developed a gene reporter assay for the analysis of protein-protein interaction in mammalian cells. Ras activation in mammalian cells induces the mitogen-activated kinase cascade (MAPK), which can be monitored using Ras-dependent reporter genes. This greatly extends the usefulness of the system and provides a novel assay for protein-protein interaction in mammalian cells.  相似文献   

9.
Baumann RP  Sherman DH  Sartorelli AC 《BioTechniques》2002,32(5):1030, 1032, 1034 passim
The availability of selectable markers suitable for use in mammalian cells has permitted the analysis of the influence of the stable overexpression of single or multiple genes on specific cell properties. This powerful technique has led directly to many fundamental advances in molecular biology and increased our overall understanding of cell growth and regulatory events. Although a variety of selectable markers are currently available, some cell lines continue to be naturally resistant to certain markers, making direct selection difficult or not feasible. Thus, the characterization of additional cell selectable markers continues to be of interest. We have developed a novel selectable marker based on mitomycin C resistance that is suitable for stable transfection of mammalian cells. This system is based on the ability of the mcrA gene, isolatedfrom Streptomyces lavendulae, to confer mitomycin C resistance to both bacterial and mammalian cells by expression of the MCRA protein. Here we demonstrate that mcrA can be used as a selectable gene marker in Chinese hamster ovary cells when cells transfected with the mcrA gene are either pulsed or cultured continuously with mitomycin C This unique selection system may be of use for transfection of cells that are resistant to currently available selectable markers.  相似文献   

10.
In recent years, serum-free medium for mammalian cell cultivation has attracted a lot of attention, considering the high cost of production and environmental load involved in developing the conventional animal sera. The use of alternative growth-promoting products in mammalian cell cultivation such as extracts from microalgae has proven to be quite beneficial and environmental-friendly. This research aims to cultivate mammalian cells with growth-promoting factors derived from Chlorococcum littorale. We have established a simple extraction using the ultrasonication method and applied the extract in place of serum on mammalian C2C12 cell lines, 3T3 cell lines, and CHO cell lines to compare and analyze the effectiveness of the extract. Cell passage was conducted in a suspended culture condition with the addition of the extract. The results indicate that the extract from microalgae shows a high proliferation rate in all cell lines without fetal bovine serum. Moreover, it is eco-friendly and has huge potential to replace the traditional cell culture system. It could be applied in the fields of regenerative medicine, gene/cell therapies, as well as cultured meat production.  相似文献   

11.
12.
We have previously engineered transgenic insect cell lines to express mammalian glycosyltransferases and showed that these cells can sialylate N-glycoproteins, despite the fact that they have little intracellular sialic acid and no detectable CMP-sialic acid. In the accompanying study, we presented evidence that these cell lines can salvage sialic acids for de novo glycoprotein sialylation from extracellular sialoglycoproteins, such as fetuin, found in fetal bovine serum. This finding led us to create a new transgenic insect cell line designed to synthesize its own sialic acid and CMP-sialic acid. SfSWT-1 cells, which encode five mammalian glycosyltransferases, were transformed with two additional mammalian genes that encode sialic acid synthase and CMP-sialic acid synthetase. The resulting cell line expressed all seven mammalian genes, produced CMP-sialic acid, and sialylated a recombinant glycoprotein when cultured in a serum-free growth medium supplemented with N-acetylmannosamine. Thus the addition of mammalian genes encoding two enzymes involved in CMP-sialic acid biosynthesis yielded a new transgenic insect cell line, SfSWT-3, that can sialylate recombinant glycoproteins in the absence of fetal bovine serum. This new cell line will be widely useful as an improved host for baculovirus-mediated recombinant glycoprotein production.  相似文献   

13.
The position of the mitotic spindle plays a key role in spatial control of cell division. It is generally believed that when a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are usually unequal in size due to eccentric cleavage of the mother cell. Molecular mechanisms underlying the generation of unequal sized daughter cells have been extensively studied in Drosophila neuroblast and Caenorhabditis elegans zygote where the Gα subunit of the heterotrimeric G proteins and its binding partner - Pins in Drosophila and GPR-1/2 in C. elegans - are shown to be critical in governing spindle positioning and asymmetric cleavage of the mother cell. In mammalian system, although Gα and LGN (mammalian Pins homolog) are also required for spindle orientation, whether they can mediate asymmetric spindle positioning or asymmetric cleavage of the mother cell is not known. Here, by artificially targeting Gαi to the apical cortex in 3-D cultured MDCK cells, we established a system where asymmetric spindle positioning can be consistently induced. Interestingly, this asymmetrically positioned spindle does not lead to asymmetric cleavage; instead it results in equal sized daughter cells. Live cell time-lapse analysis revealed that anaphase spindle elongation compensated the original asymmetric spindle positioning. Our findings demonstrate that asymmetric spindle positioning does not necessarily lead to unequal sized daughter cells in mammalian system. We discuss potential mechanisms in generating unequal sized daughter cells.  相似文献   

14.
Production of recombinant protein therapeutics in cultivated mammalian cells   总被引:30,自引:0,他引:30  
Wurm FM 《Nature biotechnology》2004,22(11):1393-1398
Cultivated mammalian cells have become the dominant system for the production of recombinant proteins for clinical applications because of their capacity for proper protein folding, assembly and post-translational modification. Thus, the quality and efficacy of a protein can be superior when expressed in mammalian cells versus other hosts such as bacteria, plants and yeast. Recently, the productivity of mammalian cells cultivated in bioreactors has reached the gram per liter range in a number of cases, a more than 100-fold yield improvement over titers seen for similar processes in the mid-1980s. This increase in volumetric productivity has resulted mainly from improvements in media composition and process control. Opportunities still exist for improving mammalian cell systems through further advancements in production systems as well as through vector and host cell engineering.  相似文献   

15.
The baculovirus vector systems has been extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which has the capability to express multiple genes simultaneously within a single infected insect cells and to use recombinant virus with mammalian cell-active expression cassettes to permit expression of recombinant proteins in mammalian cells in vitro and in vivo. Future investigations of the baculovirus expression system designed for specific target cells, can open wide variety of applications. This review summarizes the recent achievements in applications the baculovirus vector systems and optimization recombinant protein expression in both insect and mammalian cell lines.  相似文献   

16.
High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.  相似文献   

17.
There is abundant evidence implicating a role for intracellular pH (pHin) in the proliferative response of many cells to mitogenic agents. In mammalian cells, pHin is generally regulated by two systems: Na+/H+ exchange and HCO3- transport. Activation of Na+/H+ exchange is one of the earliest responses of mammalian cells to mitogens. In the absence of HCO3-, this activation raises the pHin. However, in the presence of HCO3-, the effect of mitogens on the pHin is unclear. HCO3- regulates pHin via mechanisms which can either acidify or alkalinize the cytosol, depending on the cell type and tissue of origin. BALB/c 3T3 mouse embryo cells are employed in the present study because they are used extensively in investigations of mammalian cell proliferation. Since these cells are of indefinite origin, there is no way to predict which HCO3- transporting system is operable in these cells and, hence, what effect HCO3- will have on the pHin and the response of pHin to mitogens. In the present article, we examine the mechanism and effect of HCO3(-)-based pHin regulation. Our results indicate that HCO3(-)-dependent pHin regulation in BALB/c 3T3 cells occurs via Na-HCO3/HCl exchange which raises pHin under physiological conditions. This activity can raise the pHin to above the set point of the activated Na+/H+ exchanger, consequently attenuating the mitogen-induced Na+/H+ exchange-mediated increases in pHin.  相似文献   

18.
19.
In the nematode Caenorhabditis elegans, CED-4 plays a central role in the regulation of programmed cell death. To identify proteins with essential or pleiotropic activities that might also regulate cell death, we used the yeast two-hybrid system to screen for CED-4-binding proteins. We identified MAC-1, a member of the AAA family of ATPases that is similar to Smallminded of Drosophila. Immunoprecipitation studies confirm that MAC-1 interacts with CED-4, and also with Apaf-1, the mammalian homologue of CED-4. Furthermore, MAC-1 can form a multi-protein complex that also includes CED-3 or CED-9. A MAC-1 transgene under the control of a heat shock promoter prevents some natural cell deaths in C. elegans, and this protection is enhanced in a ced-9(n1950sd)/+ genetic background. We observe a similar effect in mammalian cells, where expression of MAC-1 can prevent CED-4 and CED-3 from inducing apoptosis. Finally, mac-1 is an essential gene, since inactivation by RNA-mediated interference causes worms to arrest early in larval development. This arrest is similar to that observed in Smallminded mutants, but is not related to the ability of MAC-1 to bind CED-4, since it still occurs in ced-3 or ced-4 null mutants. These results suggest that MAC-1 identifies a new class of proteins that are essential for development, and which might regulate cell death in specific circumstances.  相似文献   

20.
Upon developing therapeutically potent antibodies, there are significant requirements, such as increasing their affinity, regulating their epitope, and using native target antigens. Many antibody selection systems, such as a phage display method, have been developed, but it is still difficult to fulfill these requirements at the same time. Here, we propose a novel epitope-directed antibody affinity maturation system utilizing mammalian cell survival as readout. This system is based on the competition of antibody binding, and can target membrane proteins expressed in a native form on a mammalian cell surface. Using this system, we successfully selected an affinity-matured anti-ErbB2 single-chain variable fragment variant, which had the same epitope as the original one. In addition, the affinity was increased mainly due to the decrease in the dissociation rate. This novel cell-based antibody affinity maturation system could contribute to directly obtaining therapeutically potent antibodies that are functional on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号